Skip to main content
Log in

Mutations in the Reelin pathway are associated with abnormal expression of microglial IgG FC receptors in the cerebellar cortex

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Microglia are the immune cells of the central nervous system involved in a variety of developmental processes, such as regulation of cell death and survival, spatial patterning, and contribute to the development of Purkinje cells (PCs) during migration. Microglia express immunoglobulin G Fc receptors (FcgRs). In this report, we describe microglial FcgR expression and its relation to abnormal PC migration in the cerebellum during development. To detect microglial FcgR, the direct anti-IgG (secondary antisera) and high concentrations of Triton X-100 were applied as a method for labeling microglial cells without the use of any specific primary antiserum. By using Acp2−/− mice, which show an excessive PC migration into the molecular layer (ml), and 3 different types of mice with a null to alter the Reelin pathway (Reeler-, Dab1 (SCM)-, and Apoer mutant mice), we studied the location of PCs and the expression of FcgRs. Wild type littermates were used as controls in all studies. We show that the expression of microglial FcgRs was absent and PCs were ectopically located in the white matter in the cerebella of all mutant mice, except for the Acp2−/− mice (PCs were located in the ml). These results suggest a role for FcgRs in the Reelin signaling pathway, not in regulating PC migration, but rather in the adaptation to an environment with a relatively large number of ectopically located PCs. However, the exact correlation between the ectopic location of PCs and lack of FcgRs in Reeler, SCM, and Apoer−/− mice and the presence of FcgRs and directed PC location in the ml in Acp2−/− mice are yet to be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data will be provided upon request.

References

  1. Marzban H (2017) Development of the cerebellum from molecular aspects to diseases. Springer, Cham

    Google Scholar 

  2. Miyata T, Ono Y, Okamoto M, Masaoka M, Sakakibara A, Kawaguchi A et al (2010) Migration, early axonogenesis, and Reelin-dependent layer-forming behavior of early/posterior-born Purkinje cells in the developing mouse lateral cerebellum. Neural Dev 5(1):23

    PubMed  PubMed Central  Google Scholar 

  3. Rahimi-Balaei M, Bergen H, Kong J, Marzban H (2018) Neuronal migration during development of the cerebellum. Front Cell Neurosci 12:484

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Larouche M, Beffert U, Herz J, Hawkes R (2008) The Reelin receptors Apoer2 and Vldlr coordinate the patterning of Purkinje cell topography in the developing mouse cerebellum. PLoS ONE 3(2):e1653

    PubMed  PubMed Central  Google Scholar 

  5. D’arcangelo G, Miao GG, Chen S-C, Scares HD, Morgan JI, Curran T (1995) A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374(6524):719

    PubMed  Google Scholar 

  6. Howell BW, Hawkes R, Soriano P, Cooper JA (1997) Neuronal position in the developing brain is regulated by mouse disabled-1. Nature 389(6652):733

    CAS  PubMed  Google Scholar 

  7. Trommsdorff M, Gotthardt M, Hiesberger T, Shelton J, Stockinger W, Nimpf J et al (1999) Reeler/Disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 97(6):689–701

    CAS  PubMed  Google Scholar 

  8. Bailey K, Balaei MR, Mehdizadeh M, Marzban H (2013) Spatial and temporal expression of lysosomal acid phosphatase 2 (ACP2) reveals dynamic patterning of the mouse cerebellar cortex. Cerebellum 12(6):870–881

    CAS  PubMed  Google Scholar 

  9. Mannan AU, Roussa E, Kraus C, Rickmann M, Maenner J, Nayernia K et al (2004) Mutation in the gene encoding lysosomal acid phosphatase (Acp2) causes cerebellum and skin malformation in mouse. Neurogenetics 5(4):229–238

    CAS  PubMed  Google Scholar 

  10. Frost JL, Schafer DP (2016) Microglia: architects of the developing nervous system. Trends Cell Biol 26(8):587–597

    PubMed  PubMed Central  Google Scholar 

  11. Schafer DP, Stevens B (2015) Microglia function in central nervous system development and plasticity. Cold Spring Harb Perspect Biol 7(10):a020545

    PubMed  PubMed Central  Google Scholar 

  12. Nakayama H, Abe M, Morimoto C, Iida T, Okabe S, Sakimura K et al (2018) Microglia permit climbing fiber elimination by promoting GABAergic inhibition in the developing cerebellum. Nature Commun 9:1–15

    Google Scholar 

  13. Marın-Teva JL, Dusart I, Colin C, Gervais A, Van Rooijen N, Mallat M (2004) Microglia promote the death of developing Purkinje cells. Neuron 41(4):535–547

    PubMed  Google Scholar 

  14. Okun E, Mattson MP, Arumugam TV (2010) Involvement of Fc receptors in disorders of the central nervous system. Neuromol Med 12(2):164–178

    CAS  Google Scholar 

  15. Rahimi Balaei M, Jiao X, Ashtari N, Afsharinezhad P, Ghavami S, Marzban H (2016) Cerebellar expression of the neurotrophin receptor p75 in naked-ataxia mutant Mouse. Int J Mol Sci 17(1):115

    PubMed Central  Google Scholar 

  16. Bailey K, Balaei MR, Mannan A, Del Bigio MR, Marzban H (2014) Purkinje cell compartmentation in the cerebellum of the lysosomal acid phosphatase 2 mutant mouse (nax-naked-ataxia mutant mouse). PLoS ONE 9(4):e94327

    PubMed  PubMed Central  Google Scholar 

  17. Mariani J, Crepel F, Mikoshiba K, Changeux JP, Sotelo C (1977) Anatomical, physiological and biochemical studies of the cerebellum from Reeler mutant mouse. Philos Trans R Soc Lond B 281(978):1–28

    CAS  Google Scholar 

  18. Rice DS, Curran T (2001) Role of the reelin signaling pathway in central nervous system development. Annu Rev Neurosci 24:1005–1039

    CAS  PubMed  Google Scholar 

  19. Sweet HO, Bronson RT, Johnson KR, Cook SA, Davisson MT (1996) Scrambler, a new neurological mutation of the mouse with abnormalities of neuronal migration. Mamm Genome 7(11):798–802

    CAS  PubMed  Google Scholar 

  20. Goldowitz D, Cushing RC, Laywell E, D'Arcangelo G, Sheldon M, Sweet HO et al (1997) Cerebellar disorganization characteristic of reeler in scrambler mutant mice despite presence of reelin. J Neurosci 17(22):8767–8777

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Gallagher E, Howell BW, Soriano P, Cooper JA, Hawkes R (1998) Cerebellar abnormalities in the disabled (mdab1-1) mouse. J Comp Neurol 402(2):238–251

    CAS  PubMed  Google Scholar 

  22. Ohsawa K, Imai Y, Sasaki Y, Kohsaka S (2004) Microglia/macrophage-specific protein Iba1 binds to fimbrin and enhances its actin-bundling activity. J Neurochem 88(4):844–856

    CAS  PubMed  Google Scholar 

  23. Weruaga E, Alonso JR, Porteros A, Crespo C, Arevalo R, Brinon JG et al (1998) Nonspecific labeling of myelin with secondary antisera and high concentrations of Triton X-100. J Histochem Cytochem 46(1):109–118

    CAS  PubMed  Google Scholar 

  24. Afshar P, Ashtari N, Jiao X, Rahimi-Balaei M, Zhang X, Yaganeh B et al (2017) Overexpression of human SOD1 leads to discrete defects in the cerebellar architecture in the mouse. Front Neuroanat 11:22

    PubMed  PubMed Central  Google Scholar 

  25. Bailey K, Rahimi Balaei M, Mehdizadeh M, Marzban H (2013) Spatial and temporal expression of lysosomal acid phosphatase 2 (ACP2) reveals dynamic patterning of the mouse cerebellar cortex. Cerebellum 12(6):870–881

    CAS  PubMed  Google Scholar 

  26. Hazama GI, Yasuhara O, Morita H, Aimi Y, Tooyama I, Kimura H (2005) Mouse brain IgG-like immunoreactivity: strain-specific occurrence in microglia and biochemical identification of IgG. J Comp Neurol 492(2):234–249

    CAS  PubMed  Google Scholar 

  27. Ito D, Imai Y, Ohsawa K, Nakajima K, Fukuuchi Y, Kohsaka S (1998) Microglia-specific localisation of a novel calcium binding protein, Iba1. Brain Res Mol Brain Res 57(1):1–9

    CAS  PubMed  Google Scholar 

  28. Shapiro LA, Wang L, Ribak CE (2008) Rapid astrocyte and microglial activation following pilocarpine-induced seizures in rats. Epilepsia 49(Suppl 2):33–41

    CAS  PubMed  Google Scholar 

  29. Rahimi-Balaei M, Jiao X, Shabanipour S, Dixit R, Schuurmans C, Marzban H (2019) Zebrin II Is ectopically expressed in microglia in the cerebellum of neurogenin 2 null mice. Cerebellum 18(1):56–66

    CAS  PubMed  Google Scholar 

  30. Upender M, Dunn J, Wilson S, Naegele J (1997) Immunoglobulin molecules are present in early-generated neuronal populations in the rat cerebral cortex and retina. J Comp Neurol 384(2):271–282

    CAS  PubMed  Google Scholar 

  31. Niu N, Zhang J, Guo Y, Zhao Y, Korteweg C, Gu J (2011) Expression and distribution of immunoglobulin G and its receptors in the human nervous system. Int J Biochem Cell Biol 43(4):556–563

    CAS  PubMed  Google Scholar 

  32. Morimoto K, Nakajima K (2019) Role of the immune system in the development of the central nervous system. Front Neurosci 13:916

    PubMed  PubMed Central  Google Scholar 

  33. Ashwell K (1990) Microglia and cell death in the developing mouse cerebellum. Dev Brain Res 55(2):219–230

    CAS  Google Scholar 

  34. Meier P, Finch A, Evan G (2000) Apoptosis in development. Nature 407(6805):796

    CAS  PubMed  Google Scholar 

  35. Yeo W, Gautier J (2004) Early neural cell death: dying to become neurons. Dev Biol 274(2):233–244

    CAS  PubMed  Google Scholar 

  36. Bilimoria PM, Stevens B (2015) Microglia function during brain development: new insights from animal models. Brain Res 1617:7–17

    CAS  PubMed  Google Scholar 

  37. Song X, Tanaka S, Cox D, Lee SC (2004) Fcγ receptor signaling in primary human microglia: differential roles of PI-3K and Ras/ERK MAPK pathways in phagocytosis and chemokine induction. J Leukoc Biol 75(6):1147–1155

    CAS  PubMed  Google Scholar 

  38. Ueyama T, Lennartz MR, Noda Y, Kobayashi T, Shirai Y, Rikitake K et al (2004) Superoxide production at phagosomal cup/phagosome through βI protein kinase C during FcγR-mediated phagocytosis in microglia. J Immunol 173(7):4582–4589

    CAS  PubMed  Google Scholar 

  39. Hartfuss E, Förster E, Bock HH, Hack MA, Leprince P, Luque JM et al (2003) Reelin signaling directly affects radial glia morphology and biochemical maturation. Development 130(19):4597–4609

    CAS  PubMed  Google Scholar 

  40. Förster E, Tielsch A, Saum B, Weiss KH, Johanssen C, Graus-Porta D et al (2002) Reelin, Disabled 1, and β1 integrins are required for the formation of the radial glial scaffold in the hippocampus. Proc Natl Acad Sci 99(20):13178–13183

    PubMed  Google Scholar 

  41. Weiss KH, Johanssen C, Tielsch A, Herz J, Deller T, Frotscher M et al (2003) Malformation of the radial glial scaffold in the dentate gyrus of reeler mice, scrambler mice, and ApoER2/VLDLR-deficient mice. J Comp Neurol 460(1):56–65

    CAS  PubMed  Google Scholar 

  42. Campbell K, Götz M (2002) Radial glia: multi-purpose cells for vertebrate brain development. Trends Neurosci 25(5):235–238

    CAS  PubMed  Google Scholar 

  43. Laskowitz D, Thekdi A, Thekdi S, Han S, Myers J, Pizzo S et al (2001) Downregulation of microglial activation by apolipoprotein E and apoE-mimetic peptides. Exp Neurol 167(1):74–85

    CAS  PubMed  Google Scholar 

  44. Jiang Q, Lee CD, Mandrekar S, Wilkinson B, Cramer P, Zelcer N et al (2008) ApoE promotes the proteolytic degradation of Aβ. Neuron 58(5):681–693

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Christie RH, Chung H, Rebeck GW, Strickland D, Hyman BT (1996) Expression of the very low-density lipoprotein receptor (VLDL-r), an apolipoprotein-E receptor, in the central nervous system and in Alzheimer's disease. J Neuropathol Exp Neurol 55(4):491–498

    CAS  PubMed  Google Scholar 

  46. Grainger DJ, Reckless J, McKilligin E (2004) Apolipoprotein E modulates clearance of apoptotic bodies in vitro and in vivo, resulting in a systemic proinflammatory state in apolipoprotein E-deficient mice. J Immunol 173(10):6366–6375

    CAS  PubMed  Google Scholar 

  47. Yin B, Loike JD, Kako Y, Weinstock PH, Breslow JL, Silverstein SC et al (1997) Lipoprotein lipase regulates Fc receptor-mediated phagocytosis by macrophages maintained in glucose-deficient medium. J Clin Investig 100(3):649–657

    CAS  PubMed  Google Scholar 

  48. Bigler RD, Khoo M, Lund-Katz S, Scerbo L, Esfahani M (1990) Identification of low density lipoprotein as a regulator of Fc receptor-mediated phagocytosis. Proc Natl Acad Sci 87(13):4981–4985

    CAS  PubMed  Google Scholar 

  49. Trommsdorff M, Borg J-P, Margolis B, Herz J (1998) Interaction of cytosolic adaptor proteins with neuronal apolipoprotein E receptors and the amyloid precursor protein. J Biol Chem 273(50):33556–33560

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Science Impact (Winnipeg, Canada) for editing the manuscript.

Funding

This study was supported by grants from the Natural Sciences and Engineering Research Council (HM: NSERC Discovery Grant # RGPIN-2018-06040), Dr. Paul H.T. Thorlakson Foundation Fund (HM: Grant # 48205), and Children Hospital Research Institute of Manitoba (HM: Grant # 320035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Marzban.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest/competing interests.

Research involving human participants and/or animals

Animal study was performed under certificate number 15-066/1/2. This research is not involved any human subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11033_2020_5614_MOESM1_ESM.tif

Supplementary file1 (TIF 11767 kb)—Supplementary Fig. 1. Peroxidase immunostaining of cerebellar sections to show the development of FcgR+ cells. A, B, C, D. FcgR immunoperoxidase staining of a frontal section through the cerebellum at E17 showing weak immunoreactivity at the cerebellar core, as indicated by the arrowhead in a higher magnification view of the same section in “B”. FcgR immunoperoxidase reactivity is strongly outlined in microglial cell bodies at P1 (C) and P3 (D).E, F. FcgR immunoperoxidase staining of a sagittal section through the cerebellum at P10 shows strong and scattered immunoreactivity in microglia (e.g. arrow) in the white matter and cerebellar cortex, respectively. F) A higher magnification view of the same section as in “E” shows a microglial cell body (arrow) and its developing branches (arrowheads). Scale bars: 1mm (A); 250μm (B); 50μm (D applies to C); 100μm (E); 25μm (F).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahimi-Balaei, M., Jiao, X., Dalvand, A. et al. Mutations in the Reelin pathway are associated with abnormal expression of microglial IgG FC receptors in the cerebellar cortex. Mol Biol Rep 47, 5323–5331 (2020). https://doi.org/10.1007/s11033-020-05614-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05614-0

Keywords

Navigation