Skip to main content
Log in

Critical role of EphA3 in cancer and current state of EphA3 drug therapeutics

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The erythropoietin-producing human hepatocellular (Eph) receptors are transmembrane glycoprotein members of the tyrosine kinase receptors family. The Ephs may bind to various ephrin ligands resulting in the phosphorylation of their tyrosine kinase domain and the activation of the Eph receptor. In this review we focus on EphA3, one receptor of the 14 different Ephs, as it carries out both redundant and restricted functions in the germline development of mammals and in the maintenance of various adult tissues. The loss of EphA3 regulation is correlated with various human malignancies, the most notable being cancer. This receptor is overexpressed and/or mutated in multiple tumors, and is also associated with poor prognosis and decreased survival in patients. Here we highlight the role of EphA3 in normal and malignant tissues that are specific to cancer; these include hematologic disorders, gastric cancer, glioblastoma multiforme, colorectal cancer, lung cancer, renal cell carcinoma, and prostate cancer. Moreover, various anticancer agents against EphA3 have been developed to either inhibit its kinase domain activity or to function as agonists. Thus, we examine the most potent small molecule drugs and mAb-based therapeutics against EphA3 that are currently in pre-clinical or clinical stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

EGF:

Epidermal growth factor

RTKs:

Receptor tyrosine kinases

LBD:

Ligand binding domain

mAb:

Monoclonal antibody

Eph:

Erythropoietin-producing hepatocellular

ECD:

Extracellular domain

FN3:

Fibronectin type-III

JxM:

Juxtamembrane

SAM:

Sterile alpha-motif

Ephrins:

Eph receptor-interacting proteins

GBM:

Glioblastoma multiforme

NSCLC:

Non-small cell lung cancer

SCLC:

Small-cell lung cancer

ccRCC:

Clear-cell renal cell carcinoma

MAPK:

Mitogen-activated protein kinase

PCa:

Prostate cancer

AR:

Androgen receptor

References

  1. Gschwind A, Fischer OM, Ullrich A (2004) The discovery of receptor tyrosine kinases: targets for cancer therapy. Nat Rev Cancer 4(5):361–370. https://doi.org/10.1038/nrc1360

    Article  CAS  PubMed  Google Scholar 

  2. Carpenter G, Lembach KJ, Morrison MM, Cohen S (1975) Characterization of the binding of 125-I-labeled epidermal growth factor to human fibroblasts. J Biol Chem 250(11):4297–4304

    CAS  PubMed  Google Scholar 

  3. Schlessinger J (2014) Receptor tyrosine kinases: legacy of the first two decades. Cold Spring Harb Perspect Biol 6(3):a008912. https://doi.org/10.1101/cshperspect.a008912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kasuga M, Zick Y, Blithe DL, Crettaz M, Kahn CR (1982) Insulin stimulates tyrosine phosphorylation of the insulin receptor in a cell-free system. Nature 298(5875):667–669. https://doi.org/10.1038/298667a0

    Article  CAS  PubMed  Google Scholar 

  5. Czech MP (1982) Structural and functional homologies in the receptors for insulin and the insulin-like growth factors. Cell 31(1):8–10

    Article  CAS  PubMed  Google Scholar 

  6. Ek B, Rönnstrand L, Heldin CH (1984) Stimulation of tyrosine phosphorylation by platelet-derived growth factor. Biochem Soc Trans 12(5):759–762. https://doi.org/10.1042/bst0120759

    Article  CAS  PubMed  Google Scholar 

  7. Wheeler DL (2015) In: Wheeler DL, Yarden Y (eds) Receptor tyrosine kinases: family and subfamilies. Springer, Cham. https://doi.org/10.1007/978-3-319-11888-8

  8. Lemmon MA (2009) Ligand-induced ErbB receptor dimerization. Exp Cell Res 315(4):638–648. https://doi.org/10.1016/j.yexcr.2008.10.024

    Article  CAS  PubMed  Google Scholar 

  9. Schneider MR, Yarden Y (2016) The EGFR-HER2 module: a stem cell approach to understanding a prime target and driver of solid tumors. Oncogene 35(23):2949–2960. https://doi.org/10.1038/onc.2015.372

    Article  CAS  PubMed  Google Scholar 

  10. Casaletto JB, McClatchey AI (2012) Spatial regulation of receptor tyrosine kinases in development and cancer. Nat Rev Cancer 12(6):387–400. https://doi.org/10.1038/nrc3277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lemmon MA, Schlessinger J (2010) Cell signaling by receptor tyrosine kinases. Cell 141(7):1117–1134. https://doi.org/10.1016/j.cell.2010.06.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Noren NK, Yang N-Y, Silldorff M, Mutyala R, Pasquale EB (2009) Ephrin-independent regulation of cell substrate adhesion by the EphB4 receptor. Biochem J 422(3):433–442. https://doi.org/10.1042/BJ20090014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee KF, Simon H, Chen H, Bates B, Hung MC, Hauser C (1995) Requirement for neuregulin receptor erbB2 in neural and cardiac development. Nature 378:394–398. https://doi.org/10.1038/378394a0

    Article  CAS  PubMed  Google Scholar 

  14. Hoogenraad CC, Milstein AD, Ethell IM, Henkemeyer M, Sheng M (2005) GRIP1 controls dendrite morphogenesis by regulating EphB receptor trafficking. Nat Neurosci 8(7):906–915. https://doi.org/10.1038/nn1487

    Article  CAS  PubMed  Google Scholar 

  15. Doolittle R, Hunkapiller M, Hood L, Devare S, Robbins K, Aaronson S, Antoniades H (1983) Simian sarcoma virus onc gene, v-sis, is derived from the gene (or genes) encoding a platelet-derived growth factor. Science 221(4607):275–277. https://doi.org/10.1126/science.6304883

    Article  CAS  PubMed  Google Scholar 

  16. Brix DM, Clemmensen KKB, Kallunki T (2014) When good turns bad: regulation of invasion and metastasis by ErbB2 receptor tyrosine kinase. Cells 3:53–78. https://doi.org/10.3390/cells3010053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sassen A, Rochon J, Wild P, Hartmann A, Hofstaedter F, Schwarz S, Brockhoff G (2008) Cytogenetic analysis of HER1/EGFR, HER2, HER3 and HER4 in 278 breast cancer patients. Breast Cancer Res 10(1):R2. https://doi.org/10.1186/bcr1843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rubin Grandis J, Melhem MF, Gooding WE, Day R, Holst VA, Wagener MM et al (1998) Levels of TGF-alpha and EGFR protein in head and neck squamous cell carcinoma and patient survival. J Natl Cancer Inst 90(11):824–832

    Article  CAS  PubMed  Google Scholar 

  19. Himanen JP (2012) Ectodomain structures of Eph receptors. Semin Cell Dev Biol 23(1):35–42. https://doi.org/10.1016/j.semcdb.2011.10.025

    Article  CAS  PubMed  Google Scholar 

  20. Kullander K, Klein R (2002) Mechanisms and functions of eph and ephrin signalling. Nat Rev Mol Cell Biol 3(7):475–486. https://doi.org/10.1038/nrm856

    Article  CAS  PubMed  Google Scholar 

  21. Janes PW, Nievergall E, Lackmann M (2012) Concepts and consequences of Eph receptor clustering. Semin Cell Dev Biol 23(1):43–50. https://doi.org/10.1016/j.semcdb.2012.01.001

    Article  CAS  PubMed  Google Scholar 

  22. Lisabeth EM, Falivelli G, Pasquale EB (2013) Eph receptor signaling and ephrins. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a009159

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wijeratne DT, Rodger J, Wood FM, Fear MW (2016) The role of Eph receptors and Ephrins in the skin. Int J Dermatol 55(1):3–10. https://doi.org/10.1111/ijd.12968

    Article  CAS  PubMed  Google Scholar 

  24. Rohani N, Canty L, Luu O, Fagotto F, Winklbauer R (2011) EphrinB/EphB signaling controls embryonic germ layer separation by contact-induced cell detachment. PLoS Biol. https://doi.org/10.1371/journal.pbio.1000597

    Article  PubMed  PubMed Central  Google Scholar 

  25. Robinson V, Smith A, Flenniken AM, Wilkinson DG (1997) Roles of Eph receptors and ephrins in neural crest pathfinding. Cell Tissue Res 290(2):265–274. https://doi.org/10.1007/s004410050931

    Article  CAS  PubMed  Google Scholar 

  26. Egea J, Klein R (2007) Bidirectional Eph–ephrin signaling during axon guidance. Trends Cell Biol 17(5):230–238. https://doi.org/10.1016/j.tcb.2007.03.004

    Article  CAS  PubMed  Google Scholar 

  27. Davy A, Soriano P (2005) Ephrin signaling in vivo: Look both ways. Dev Dyn. https://doi.org/10.1002/dvdy.20200

    Article  PubMed  Google Scholar 

  28. Kuijper S, Turner CJ, Adams RH (2007) Regulation of angiogenesis by Eph-ephrin interactions. Trends Cardiovasc Med 17(5):145–151. https://doi.org/10.1016/j.tcm.2007.03.003

    Article  CAS  PubMed  Google Scholar 

  29. Genander M, Frisén J (2010) Ephrins and Eph receptors in stem cells and cancer. Curr Opin Cell Biol 22(5):611–616. https://doi.org/10.1016/j.ceb.2010.08.005

    Article  CAS  PubMed  Google Scholar 

  30. Drescher U (2002) Eph family functions from an evolutionary perspective. Curr Opin Genet Dev 12(4):397–402. https://doi.org/10.1016/S0959-437X(02)00316-7

    Article  CAS  PubMed  Google Scholar 

  31. Sakamoto A, Sugamoto Y, Tokunaga Y, Yoshimuta T, Hayashi K, Konno T, Kawashiri MA, Takeda Y, Yamagishi M (2011) Expression profiling of the ephrin (EFN) and Eph receptor (EPH) family of genes in atherosclerosis-related human cells. J Int Med Res 39(2):522–527. https://doi.org/10.1177/147323001103900220

    Article  CAS  PubMed  Google Scholar 

  32. Tournoij E, Koekman CA, Du VX, Roest M, Ruijtenbeek R, Moll FL, Akkerman JWN (2012) The platelet P2Y12 receptor contributes to granule secretion through Ephrin A4 receptor. Platelets 23(8):617–625. https://doi.org/10.3109/09537104.2011.645924

    Article  CAS  PubMed  Google Scholar 

  33. Sakamoto A, Ishibashi-Ueda H, Sugamoto Y, Higashikata T, Miyamoto S, Kawashiri MA, Yagi K, Konno T, Hayashi K, Fujino N, Ino H, Takeda Y, Yamagishi M (2008) Expression and function of ephrin-B1 and its cognate receptor EphB2 in human atherosclerosis: from an aspect of chemotaxis. Clin Sci 114(9–10):643–650. https://doi.org/10.1042/CS20070339

    Article  CAS  PubMed  Google Scholar 

  34. Mimche PN, Brady LM, Bray CF, Lee CM, Thapa M, King TP, Quicke K, McDermott CD, Mimche SM, Grakoui A, Morgan ET, Lamb TJ (2015) The receptor tyrosine kinase EphB2 promotes hepatic fibrosis in mice. Hepatology 62(3):900–914. https://doi.org/10.1002/hep.27792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lagares D, Ghassemi-Kakroodi P, Tremblay C, Santos A, Probst CK, Franklin A, Wu HF, Gandhi R, Pardo A, Selman M, Wu J, Pelletier J-P, Martel-Pelletier J, Tager AM, Kapoor M (2017) ADAM10-mediated ephrin-B2 shedding promotes myofibroblast activation and organ fibrosis. Nat Med 23(12):1405–1415. https://doi.org/10.1038/nm.4419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen Y, Fu AKY, Ip NY (2012) Eph receptors at synapses: Implications in neurodegenerative diseases. Cell Signal 24(3):606–611. https://doi.org/10.1016/j.cellsig.2011.11.016

    Article  CAS  PubMed  Google Scholar 

  37. Naj AC, Jun G, Beecham GW, Wang LS, Vardarajan BN, Buros J et al (2011) Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat Genet 43(5):436–443. https://doi.org/10.1038/ng.801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sobel RA (2006) Ephrin A receptors and ligands in lesions and normal-appearing white matter in multiple sclerosis. Brain Pathol 15(1):35–45. https://doi.org/10.1111/j.1750-3639.2005.tb00098.x

    Article  Google Scholar 

  39. Lin L, Lesnick TG, Maraganore DM, Isacson O (2009) Axon guidance and synaptic maintenance: preclinical markers for neurodegenerative disease and therapeutics. Trends Neurosci. https://doi.org/10.1016/j.tins.2008.11.006

    Article  PubMed  PubMed Central  Google Scholar 

  40. Fabes J, Anderson P, Yáñez-Muñoz RJ, Thrasher A, Brennan C, Bolsover S (2006) Accumulation of the inhibitory receptor EphA4 may prevent regeneration of corticospinal tract axons following lesion. Eur J Neurosci 23(7):1721–1730. https://doi.org/10.1111/j.1460-9568.2006.04704.x

    Article  PubMed  Google Scholar 

  41. Surawska H, Ma PC, Salgia R (2004) The role of ephrins and Eph receptors in cancer. Cytokine Growth Factor Rev 15(6):419–433. https://doi.org/10.1016/j.cytogfr.2004.09.002

    Article  CAS  PubMed  Google Scholar 

  42. Hafner C, Schmitz G, Meyer S, Bataille F, Hau P, Langmann T, Dietmaier W, Landthaler M, Vogt T (2004) Differential gene expression of Eph receptors and ephrins in benign human tissues and cancers. Clin Chem 50(3):490–499. https://doi.org/10.1373/clinchem.2003.026849

    Article  CAS  PubMed  Google Scholar 

  43. Yamashita T, Ohneda K, Nagano M, Miyoshi C, Kaneko N, Miwa Y, Yamamoto M, Ohneda O, Fujii-Kuriyama Y (2008) Hypoxia-inducible transcription factor-2α in endothelial cells regulates tumor neovascularization through activation of ephrin A1. J Biol Chem 283(27):18926–18936. https://doi.org/10.1074/jbc.M709133200

    Article  CAS  PubMed  Google Scholar 

  44. Kumar SR, Masood R, Spannuth WA, Singh J, Scehnet J, Kleiber G, Dubeau L, Weaver FA, Sood AK, Gill PS (2007) The receptor tyrosine kinase EphB4 is overexpressed in ovarian cancer, provides survival signals and predicts poor outcome. Br J Cancer 96(7):1083–1091. https://doi.org/10.1038/sj.bjc.6603642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wykosky J, Debinski W (2008) The EphA2 receptor and EphrinA1 ligand in solid tumors: function and therapeutic targeting. Mol Cancer Res 6(12):1795–1806. https://doi.org/10.1158/1541-7786.MCR-08-0244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Merchant AA, Jorapur A, McManus A, Liu R, Krasnoperov V, Chaudhry P, Singh M, Harton L, Agajanian M, Kim M, Triche TJ Jr, Druker BJ, Tyner JW, Gill PS (2017) EPHB4 is a therapeutic target in AML and promotes leukemia cell survival via AKT. Blood Adv 1(20):1635–1644. https://doi.org/10.1182/bloodadvances.2017005694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hirai H, Maru Y, Hagiwara K, Nishida J, Takaku F (1987) A novel putative tyrosine kinase receptor encoded by the eph gene. Science 238(4834):1717–1720. https://doi.org/10.1126/science.2825356

    Article  CAS  PubMed  Google Scholar 

  48. Maru Y, Hirai H, Takaku F (1990) Overexpression confers an oncogenic potential upon the eph gene. Oncogene 5(3):445–447

    CAS  PubMed  Google Scholar 

  49. Bartley TD, Hunt RW, Welcher AA, Boyle WJ, Parker VP, Lindberg RA, Lu HS, Colombero AM, Elliott RL, Guthrie BA et al (1994) B61 is a ligand for the ECK receptor protein-tyrosine kinase. Nature 368(6471):558–560. https://doi.org/10.1038/368558a0

    Article  CAS  PubMed  Google Scholar 

  50. Boyd AW, Ward LD, Wicks IP, Simpson RJ, Salvaris E, Wilks A, Loudovaris M, Rockman S, Busmanis I (1992) Isolation and characterization of a novel receptor-type protein tyrosine kinase (Hek) from a human pre-B cell line. J Biol Chem 267:3262–3267

    CAS  PubMed  Google Scholar 

  51. Wicks IP, Wilkinson D, Salvaris E, Boyd AW (1992) Molecular cloning of HEK, the gene encoding a receptor tyrosine kinase expressed by human lymphoid tumor cell lines. Proc Natl Acad Sci USA 89(5):1611–1615. https://doi.org/10.1073/pnas.89.5.1611

    Article  CAS  PubMed  Google Scholar 

  52. Lisabeth EM, Fernandez C, Pasquale EB (2012) Cancer somatic mutations disrupt functions of the EphA3 receptor tyrosine kinase through multiple mechanisms. Biochemistry 51(7):1464–1475. https://doi.org/10.1021/bi2014079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Janes PW, Slape CI, Farnsworth RH, Atapattu L, Scott AM, Vail ME (2014) EphA3 biology and cancer. Growth Factors 32(6):176–189. https://doi.org/10.3109/08977194.2014.982276

    Article  CAS  PubMed  Google Scholar 

  54. Eph Nomenclature Committee (1997) Unified Nomenclature for Eph Family Receptors and Their Ligands, the Ephrins. Cell 90(3):403–404. https://doi.org/10.1016/S0092-8674(00)80500-0

    Article  Google Scholar 

  55. Pasquale EB (2004) Eph–ephrin promiscuity is now crystal clear. Nat Neurosci 7(5):417–418. https://doi.org/10.1038/nn0504-417

    Article  CAS  PubMed  Google Scholar 

  56. Noberini R, Rubio de la Torre E, Pasquale EB (2012) Profiling Eph receptor expression in cells and tissues. Cell Adh Migr 6(2):102–156. https://doi.org/10.4161/cam.19620

    Article  PubMed  PubMed Central  Google Scholar 

  57. Himanen J-P, Chumley MJ, Lackmann M, Li C, Barton WA, Jeffrey PD et al (2004) Repelling class discrimination: ephrin-A5 binds to and activates EphB2 receptor signaling. Nat Neurosci 7(5):501–509. https://doi.org/10.1038/nn123

    Article  CAS  PubMed  Google Scholar 

  58. Kullander K, Croll SD, Zimmer M, Pan L, McClain J, Hughes V et al (2001) Ephrin-B3 is the midline barrier that prevents corticospinal tract axons from recrossing, allowing for unilateral motor control. Genes Dev 15(7):877–888. https://doi.org/10.1101/gad.868901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yokoyama N, Romero MI, Cowan CA, Galvan P, Helmbacher F, Charnay P et al (2001) Forward signaling mediated by ephrin-B3 prevents contralateral corticospinal axons from recrossing the spinal cord midline. Neuron 29(1):85–97. https://doi.org/10.1016/S0896-6273(01)00182-9

    Article  CAS  PubMed  Google Scholar 

  60. Seiradake E, Harlos K, Sutton G, Aricescu AR, Jones EY (2010) An extracellular steric seeding mechanism for Eph-ephrin signaling platform assembly. Nat Struct Mol Biol 17(4):398–402. https://doi.org/10.1038/nsmb.1782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Seiradake E, Schaupp A, del Toro Ruiz D, Kaufmann R, Mitakidis N, Harlos K et al (2013) Structurally encoded intraclass differences in EphA clusters drive distinct cell responses. Nat Struct Mol Biol 20(8):958–964. https://doi.org/10.1038/nsmb.2617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Binns KL, Taylor PP, Sicheri F, Pawson T, Holland SJ (2000) Phosphorylation of tyrosine residues in the kinase domain and juxtamembrane region regulates the biological and catalytic activities of Eph receptors. Mol Cell Biol 20(13):4791–4805. https://doi.org/10.1128/MCB.20.13.4791-4805.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Pitulescu ME, Adams RH (2010) Eph/ephrin molecules—a hub for signaling and endocytosis. Genes Dev 24(22):2480–2492. https://doi.org/10.1101/gad.1973910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Daar IO (2012) Non-SH2/PDZ reverse signaling by ephrins. Semin Cell Dev Biol 1000:1000. https://doi.org/10.1016/j.semcdb.2011.10.012

    Article  CAS  Google Scholar 

  65. Miao H, Nickel CH, Cantley LG, Bruggeman LA, Bennardo LN, Wang B (2003) EphA kinase activation regulates HGF-induced epithelial branching morphogenesis. J Cell Biol 162(7):1281–1292. https://doi.org/10.1083/jcb.200304018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gao PP, Yue Y, Cerretti DP, Dreyfus C, Zhou R (1999) Ephrin-dependent growth and pruning of hippocampal axons. Proc Natl Acad Sci USA 96(7):4073–4077. https://doi.org/10.1073/pnas.96.7.4073

    Article  CAS  PubMed  Google Scholar 

  67. Kudo C, Ajioka I, Hirata Y, Nakajima K (2005) Expression profiles of EphA3 at both the RNA and protein level in the developing mammalian forebrain. J Comp Neurol 487(3):255–269. https://doi.org/10.1002/cne.20551

    Article  CAS  PubMed  Google Scholar 

  68. Chiari R, Hames G, Stroobant V, Texier C, Maille B (2000) Identification of a tumor-specific shared antigen derived from an Eph receptor and presented to CD4 T cells on HLA class II molecules identification of a tumor-specific shared antigen derived from an Eph receptor and presented to CD4 T cells on HLA class. Cancer Res 10:4855–4863

    Google Scholar 

  69. Jayasena CS, Flood WD, Koblar SA (2005) High EphA3 expressing ophthalmic trigeminal sensory axons are sensitive to ephrin-A5-Fc: Implications for lobe specific axon guidance. Neuroscience 135(1):97–109. https://doi.org/10.1016/j.neuroscience.2005.05.052

    Article  CAS  PubMed  Google Scholar 

  70. Nishikimi M, Oishi K, Tabata H, Torii K, Nakajima K (2011) Segregation and pathfinding of callosal axons through EphA3 signaling. J Neurosci 31(45):16251–16260. https://doi.org/10.1523/JNEUROSCI.3303-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Stephen LJ, Fawkes AL, Verhoeve A, Lemke G, Brown A (2007) A critical role for the EphA3 receptor tyrosine kinase in heart development. Dev Biol 302(1):66–79. https://doi.org/10.1016/j.ydbio.2006.08.058

    Article  CAS  PubMed  Google Scholar 

  72. Uhlen M, Zhang C, Lee S, Sjöstedt E, Fagerberg L, Bidkhori G et al (2017) A pathology atlas of the human cancer transcriptome. Science 357(6352):eaan2507. https://doi.org/10.1126/science.aan2507

    Article  CAS  PubMed  Google Scholar 

  73. Merlos-Suárez A, Batlle E (2008) Eph-ephrin signalling in adult tissues and cancer. Curr Opin Cell Biol 20(2):194–200. https://doi.org/10.1016/j.ceb.2008.01.011

    Article  CAS  PubMed  Google Scholar 

  74. Guan M, Liu L, Zhao X, Wu Q, Yu B, Shao Y et al (2011) Copy number variations of EphA3 are associated with multiple types of hematologic malignancies. Clin Lymphoma Myeloma Leuk 11(1):50–53. https://doi.org/10.3816/CLML.2011.n.006

    Article  CAS  PubMed  Google Scholar 

  75. Charmsaz S, Al-Ejeh F, Yeadon TM, Miller KJ, Smith FM, Stringer BW et al (2017) EphA3 as a target for antibody immunotherapy in acute lymphoblastic leukemia. Leukemia 31(8):1779–1787. https://doi.org/10.1038/leu.2016.371

    Article  CAS  PubMed  Google Scholar 

  76. Wimmer-Kleikamp SH, Nievergall E, Gegenbauer K, Adikari S, Mansour M, Yeadon T et al (2008) Elevated protein tyrosine phosphatase activity provokes Eph/ephrin-facilitated adhesion of pre-B leukemia cells. Blood 112(3):721–732. https://doi.org/10.1182/blood-2007-11-121681

    Article  CAS  PubMed  Google Scholar 

  77. Sjöblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, Velculescu VE et al (2006) The consensus coding sequences of human breast and colorectal cancers. Science 314(5797):268–274. https://doi.org/10.1126/science.1133427

    Article  CAS  PubMed  Google Scholar 

  78. Balakrishnan A, Bleeker FE, Lamba S, Rodolfo M, Daniotti M, Scarpa A et al (2007) Novel somatic and germline mutations in cancer candidate genes in glioblastoma, melanoma, and pancreatic carcinoma. Cancer Res 67(8):3545–3550. https://doi.org/10.1158/0008-5472.CAN-07-0065

    Article  CAS  PubMed  Google Scholar 

  79. Day BW, Stringer BW, Al-Ejeh F, Ting MJ, Wilson J, Ensbey KS et al (2013) EphA3 maintains tumorigenicity and is a therapeutic target in glioblastoma multiforme. Cancer Cell 23(2):238–248. https://doi.org/10.1016/j.ccr.2013.01.007

    Article  CAS  PubMed  Google Scholar 

  80. Xi H-Q, Wu X-S, Wei B, Chen L (2012) Aberrant expression of EphA3 in gastric carcinoma: correlation with tumor angiogenesis and survival. J Gastroenterol 47(7):785–794. https://doi.org/10.1007/s00535-012-0549-4

    Article  CAS  PubMed  Google Scholar 

  81. Nasri B, Inokuchi M, Ishikawa T, Uetake H, Takagi Y, Otsuki S et al (2017) High expression of EphA3 (erythropoietin-producing hepatocellular A3) in gastric cancer is associated with metastasis and poor survival. BMC Clin Pathol 17(1):8. https://doi.org/10.1186/s12907-017-0047-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Xi H-Q, Zhao P (2011) Clinicopathological significance and prognostic value of EphA3 and CD133 expression in colorectal carcinoma. J Clin Pathol 64(6):498–503. https://doi.org/10.1136/jcp.2010.087213

    Article  PubMed  Google Scholar 

  83. Li M, Yang C, Liu X, Yuan L, Zhang F, Wang M et al (2016) EphA3 promotes malignant transformation of colorectal epithelial cells by upregulating oncogenic pathways. Cancer Lett 383(2):195–203. https://doi.org/10.1016/j.canlet.2016.10.004

    Article  CAS  PubMed  Google Scholar 

  84. Andretta E, Cartón-García F, Martínez-Barriocanal Á, de Marcondes PG, Jimenez-Flores LM, Macaya I et al (2017) Investigation of the role of tyrosine kinase receptor EPHA3 in colorectal cancer. Sci Rep 7:41576. https://doi.org/10.1038/srep41576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wood LD, Calhoun ES, Silliman N, Ptak J, Szabo S, Powell SM et al (2006) Somatic mutations of GUCY2F, EPHA3, and NTRK3 in human cancers. Hum Mut 27(10):1060–1061. https://doi.org/10.1002/humu.9452

    Article  PubMed  Google Scholar 

  86. Davies H, Hunter C, Smith R, Stephens P, Greenman C, Bignell G et al (2005) Somatic mutations of the protein kinase gene family in human lung cancer. Cancer Res 65(17):7591–7595. https://doi.org/10.1158/0008-5472.CAN-05-1855

    Article  CAS  PubMed  Google Scholar 

  87. Zhuang G, Song W, Amato K, Hwang Y, Lee K, Boothby M et al (2012) Effects of cancer-associated EPHA3 mutations on lung cancer. J Natl Cancer Inst 104(15):1182–1197. https://doi.org/10.1093/jnci/djs297

    Article  CAS  PubMed  Google Scholar 

  88. Peng J, Wang Q, Liu H, Ye M, Wu X, Guo L (2016) EPHA3 regulates the multidrug resistance of small cell lung cancer via the PI3K/BMX/STAT3 signaling pathway. Tumor Biol 37(9):11959–11971. https://doi.org/10.1007/s13277-016-5048-4

    Article  CAS  Google Scholar 

  89. Lahtela J, Pradhan B, Narhi K, Hemmes A, Sarkioja M, Kovanen PE et al (2015) The putative tumor suppressor gene EphA3 fails to demonstrate a crucial role in murine lung tumorigenesis or morphogenesis. Dis Models Mech 8:393–401. https://doi.org/10.1242/dmm.019257

    Article  CAS  Google Scholar 

  90. Wang X, Xu H, Cao G, Wu Z, Wang J (2017) Loss of EphA3 protein expression is associated with advanced TNM stage in clear-cell renal cell carcinoma. Clin Genitourin Cancer 15(2):e169–e173. https://doi.org/10.1016/j.clgc.2016.07.028

    Article  PubMed  Google Scholar 

  91. Vail ME, Murone C, Tan A, Hii L, Abebe D, Janes PW et al (2014) Targeting EphA3 inhibits cancer growth by disrupting the tumor stromal microenvironment. Cancer Res 74(16):4470–4481. https://doi.org/10.1158/0008-5472.CAN-14-0218

    Article  CAS  PubMed  Google Scholar 

  92. Zhang H, Wang J, Pang B, Liang RX, Li S, Huang PT et al (2007) PC-1/PrLZ contributes to malignant progression in prostate cancer. Cancer Res 67(18):8906–8913. https://doi.org/10.1158/0008-5472.CAN-06-4214

    Article  CAS  PubMed  Google Scholar 

  93. Wu R, Wang H, Wang J, Wang P, Huang F, Xie B et al (2014) EphA3, induced by PC-1/PrLZ, contributes to the malignant progression of prostate cancer. Oncol Rep 32(6):2657–2665. https://doi.org/10.3892/or.2014.3482

    Article  CAS  PubMed  Google Scholar 

  94. Singh AP, Bafna S, Chaudhary K, Venkatraman G, Smith L, Eudy JD et al (2008) Genome-wide expression profiling reveals transcriptomic variation and perturbed gene networks in androgen-dependent and androgen-independent prostate cancer cells. Cancer Lett 259(1):28–38. https://doi.org/10.1016/j.canlet.2007.09.018

    Article  CAS  PubMed  Google Scholar 

  95. Diao X, Chen X, Pi Y, Zhang Y, Wang F, Liu P et al (2018) Androgen receptor induces EPHA3 expression by interacting with transcription factor SP1. Oncol Rep 40(2):1174–1184. https://doi.org/10.3892/or.2018.6503

    Article  CAS  PubMed  Google Scholar 

  96. Duan X, Xu X, Yin B, Hong B, Liu W, Liu Q, Tao Z (2019) The prognosis value of EphA3 and the androgen receptor in prostate cancer treated with radical prostatectomy. J Clin Lab Anal 33(5):1000. https://doi.org/10.1002/jcla.22871

    Article  CAS  Google Scholar 

  97. Choi Y, Syeda F, Walker JR, Finerty PJ, Cuerrier D, Wojciechowski A et al (2009) Discovery and structural analysis of Eph receptor tyrosine kinase inhibitors. Bioorg Med Chem Lett 19(15):4467–4470. https://doi.org/10.1016/j.bmcl.2009.05.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Liu Y, Gray NS (2006) Rational design of inhibitors that bind to inactive kinase conformations. Nat Chem Biol 2(7):358–364. https://doi.org/10.1038/nchembio799

    Article  CAS  PubMed  Google Scholar 

  99. Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT et al (2008) A quantitative analysis of kinase inhibitor selectivity. Nat Biotechnol 26(1):127–132. https://doi.org/10.1038/nbt1358

    Article  CAS  PubMed  Google Scholar 

  100. Tokarski JS, Newitt JA, Chang CYJ, Cheng JD, Wittekind M, Kiefer SE et al (2006) The structure of dasatinib (BMS-354825) bound to activated ABL kinase domain elucidates its inhibitory activity against imatinib-resistant ABL mutants. Cancer Res 66(11):5790–5797. https://doi.org/10.1158/0008-5472.CAN-05-4187

    Article  CAS  PubMed  Google Scholar 

  101. Talpaz M, Shah NP, Kantarjian H, Donato N, Nicoll J, Paquette R et al (2006) Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N Engl J Med 354(24):2531–2541. https://doi.org/10.1056/NEJMoa055229

    Article  CAS  PubMed  Google Scholar 

  102. Keating GM (2017) Dasatinib: a review in chronic myeloid leukaemia and Ph+ acute lymphoblastic leukaemia. Drugs 77(1):85–96. https://doi.org/10.1007/s40265-016-0677-x

    Article  CAS  PubMed  Google Scholar 

  103. Akeno-Stuart N, Croyle M, Knauf JA, Malaguarnera R, Vitagliano D, Santoro M et al (2007) The RET kinase inhibitor NVP-AST487 blocks growth and calcitonin gene expression through distinct mechanisms in medullary thyroid cancer cells. Cancer Res 67(14):6956–6964. https://doi.org/10.1158/0008-5472.CAN-06-4605

    Article  CAS  PubMed  Google Scholar 

  104. Weisberg E, Roesel J, Bold G, Furet P, Jiang J, Cools J et al (2008) Antileukemic effects of the novel, mutant FLT3 inhibitor NVP-AST487: effects on PKC412-sensitive and -resistant FLT3-expressing cells. Blood 112(13):5161–5170. https://doi.org/10.1182/blood-2008-02-138065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Omura S, Iwai Y, Hirano A, Nakagawa A, Awaya J, Tsuchiya H et al (1977) A new alkaloid Am-2282 of streptomyces origin taxonomy, fermentation, isolation and preliminary characterization. J Antibiot 30(4):275–282. https://doi.org/10.7164/antibiotics.30.275

    Article  CAS  PubMed  Google Scholar 

  106. Tanramluk D, Schreyer A, Pitt WR, Blundell TL (2009) On the origins of enzyme inhibitor selectivity and promiscuity: A case study of protein kinase binding to staurosporine. Chem Biol Drug Des 74(1):16–24. https://doi.org/10.1111/j.1747-0285.2009.00832.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Chae HJ, Kang JS, Byun JO, Han KS, Kim DU, Oh SM et al (2000) Molecular mechanism of staurosporine-induced apoptosis in osteoblasts. Pharmacol Res 42(4):373–381. https://doi.org/10.1006/phrs.2000.0700

    Article  CAS  PubMed  Google Scholar 

  108. Darzynkiewicz Z, Ardelt B, Skierski JS, Traganos F, Darzynkiewicz Z (1992) Different effects of staurosporine, an inhibitor of protein kinases, on the cell cycle and chromatin structure of normal and leukemic lymphocytes. Cancer Res 52(2):470–473

    PubMed  Google Scholar 

  109. Traganos F, Gong J, Ardelt B, Darzynkiewicz Z (1994) Effect of staurosporine on MOLT-4 cell progression through G2 and on cytokinesis. J Cell Physiol 158(3):535–544. https://doi.org/10.1002/jcp.1041580320

    Article  CAS  PubMed  Google Scholar 

  110. Mukthavaram R, Jiang P, Saklecha R, Simberg D, Bharati IS, Nomura N et al (2013) High-efficiency liposomal encapsulation of a tyrosine kinase inhibitor leads to improved in vivo toxicity and tumor response profile. Int J Nanomed 8:3991–4006. https://doi.org/10.2147/IJN.S51949

    Article  CAS  Google Scholar 

  111. Day BW, Stringer BW, Boyd A (2014) Eph receptors as therapeutic targets in glioblastoma. Br J Cancer 111(7):1255–1261. https://doi.org/10.1038/bjc.2014.73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lawrenson ID, Wimmer-Kleikamp SH, Lock P, Schoenwaelder SM, Down M, Boyd AW et al (2002) Ephrin-A5 induces rounding, blebbing and de-adhesion of EphA3-expressing 293T and melanoma cells by CrkII and Rho-mediated signalling. J Cell Sci 115(5):1059–1072

    CAS  PubMed  Google Scholar 

  113. Kasemeier-Kulesa JC, Bradley R, Pasquale EB, Lefcort F, Kulesa PM (2006) Eph/ephrins and N-cadherin coordinate to control the pattern of sympathetic ganglia. Development 133(24):4839–4847. https://doi.org/10.1242/dev.02662

    Article  CAS  PubMed  Google Scholar 

  114. Yang N-Y, Fernandez C, Richter M, Xiao Z, Valencia F, Tice DA, Pasquale EB (2011) Crosstalk of the EphA2 receptor with a serine/threonine phosphatase suppresses the Akt-mTORC1 pathway in cancer cells. Cell Signal 23(1):201–212. https://doi.org/10.1016/j.cellsig.2010.09.004

    Article  CAS  PubMed  Google Scholar 

  115. Zantek ND, Azimi M, Fedor-Chaiken M, Wang B, Brackenbury R, Kinch MS (1999) E-cadherin regulates the function of the EphA2 receptor tyrosine kinase. Cell Growth Differ 10(9):629–638

    CAS  PubMed  Google Scholar 

  116. Vearing C, Lee FT, Wimmer-Kleikamp S, Spirkoska V, To C, Stylianou C et al (2005) Concurrent binding of anti-EphA3 antibody and ephrin-A5 amplifies EphA3 signaling and downstream responses: potential as EphA3-specific tumor-targeting reagents. Cancer Res 65(15):6745–6754. https://doi.org/10.1158/0008-5472.CAN-05-0758

    Article  CAS  PubMed  Google Scholar 

  117. Smith FM, Vearing C, Lackmann M, Treutlein H, Himanen J, Chen K et al (2004) Dissecting the EphA3/Ephrin-A5 interactions using a novel functional mutagenesis screen. J Biol Chem 279(10):9522–9531. https://doi.org/10.1074/jbc.M309326200

    Article  CAS  PubMed  Google Scholar 

  118. Swords RT, Greenberg PL, Wei AH, Durrant S, Advani AS, Hertzberg MS et al (2016) KB004, a first in class monoclonal antibody targeting the receptor tyrosine kinase EphA3, in patients with advanced hematologic malignancies: results from a phase 1 study. Leuk Res 50:123–131. https://doi.org/10.1016/j.leukres.2016.09.012

    Article  CAS  PubMed  Google Scholar 

  119. Qazi MA, Vora P, Venugopal C, Adams J, Singh M, Hu A et al (2018) Cotargeting ephrin receptor tyrosine kinases A2 and A3 in cancer stem cells reduces growth of recurrent glioblastoma. Cancer Res 78(17):5023–5037. https://doi.org/10.1158/0008-5472.CAN-18-0267

    Article  CAS  PubMed  Google Scholar 

  120. Hu AX, Adams JJ, Vora P, Qazi M, Singh SK, Moffat J, Sidhu SS (2019) EPH Profiling of BTIC populations in glioblastoma multiforme using CyTOF. Methods Mol Biol 1869:155–168. https://doi.org/10.1007/978-1-4939-8805-s1_14

    Article  CAS  PubMed  Google Scholar 

  121. Miao H, Gale NW, Guo H, Qian J, Petty A, Kaspar J et al (2015) EphA2 promotes infiltrative invasion of glioma stem cells in vivo through cross-talk with Akt and regulates stem cell properties. Oncogene 34(5):558–567. https://doi.org/10.1038/onc.2013.590

    Article  CAS  PubMed  Google Scholar 

  122. Wykosky J, Gibo DM, Stanton C, Debinski W (2005) EphA2 as a novel molecular marker and target in glioblastoma multiforme. Mol Cancer Res 3(10):541–551. https://doi.org/10.1158/1541-7786.MCR-05-0056

    Article  CAS  PubMed  Google Scholar 

  123. Offenhäuser C, Al-Ejeh F, Puttick S, Ensbey K, Bruce Z, Jamieson P et al (2018) EphA3 pay-loaded antibody therapeutics for the treatment of glioblastoma. Cancers 10(12):519. https://doi.org/10.3390/cancers10120519

    Article  CAS  PubMed Central  Google Scholar 

  124. Pasquale EB (2008) Eph-ephrin bidirectional signaling in physiology and disease. Cell 133(1):38–52. https://doi.org/10.1016/j.cell.2008.03.011

    Article  CAS  PubMed  Google Scholar 

  125. Wang B (2011) Cancer cells exploit the Eph-ephrin system to promote invasion and metastasis: tales of unwitting partners. Sci Signal 4(175):28. https://doi.org/10.1126/scisignal.2002153

    Article  CAS  Google Scholar 

  126. Xi H-Q, Wu X-S, Wei B, Chen L (2012) Eph receptors and ephrins as targets for cancer therapy. J Cell Mol Med 16(12):2894–2909. https://doi.org/10.1111/j.1582-4934.2012.01612.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Pasquale EB (2010) Eph receptors and ephrins in cancer: bidirectional signalling and beyond. Nat Rev Cancer 10(3):165–180. https://doi.org/10.1038/nrc2806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Marcotte R, Brown KR, Suarez F, Sayad A, Karamboulas K, Krzyzanowski PM et al (2012) Essential gene profiles in breast, pancreatic, and ovarian cancer cells. Cancer Discov 2(2):172–189. https://doi.org/10.1158/2159-8290.CD-ITI12-02

    Article  CAS  PubMed  Google Scholar 

  129. Jülich D, Mould AP, Koper E, Holley SA (2009) Control of extracellular matrix assembly along tissue boundaries via integrin and Eph/Ephrin signaling. Development 136(17):2913–2921. https://doi.org/10.1242/dev.038935

    Article  CAS  PubMed  Google Scholar 

  130. Arvanitis D, Davy A (2008) Eph/ephrin signaling: networks. Genes Dev 22(4):416–429. https://doi.org/10.1101/gad.1630408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Orsulic S, Kemler R (2000) Expression of Eph receptors and ephrins is differentially regulated by E-cadherin. J Cell Sci 113(10):1793–1802

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Charles H. Best foundation (EG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugenio Gallo.

Ethics declarations

Conflict of interest

The authors disclose no potential conflicts of interest.

Informed consent

There is no informed consent as the research did not involve human participants.

Research involving human and animal rights

There is no research involving human participants and/or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

London, M., Gallo, E. Critical role of EphA3 in cancer and current state of EphA3 drug therapeutics. Mol Biol Rep 47, 5523–5533 (2020). https://doi.org/10.1007/s11033-020-05571-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05571-8

Keywords

Navigation