Skip to main content

Advertisement

Log in

Essential thrombocythemia: a hemostatic view of thrombogenic risk factors and prognosis

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Essential thrombocythemia (ET) is a classical myeloproliferative neoplasm that is susceptible to hypercoagulable state due to impaired hemostatic system, so that thrombotic complications are the leading cause of mortality in ET patients. The content used in this article has been obtained by the PubMed database and Google Scholar search engine from English-language articles (2000–2019) using the following keywords: "Essential thrombocythemia," "Thrombosis," "Risk factors" and "Hemostasis. In this neoplasm, the count and activity of cells such as platelets, leukocytes, endothelial cells, as well as erythrocytes are increased, which can increase the risk of thrombosis through rising intercellular interactions, expression of surface markers, and stimulation of platelet aggregation. In addition to these factors, genetic polymorphisms in hematopoietic stem cells (HSCs), including mutations in JAK2, CALR, MPL, or genetic abnormalities in other genes associated with the hemostatic system may be associated with increased risk of thrombotic events. Moreover, disruption of coagulant factors can pave the way for thrombogeneration. Therefore, the identification of markers related to cell activation, genetic abnormalities, or alternation in the coagulant system can be used together as diagnostic and prognostic markers for the occurrence of thrombosis among ET patients. Thus, because thrombotic complications are the main factors of mortality in ET patients, a hemostatic viewpoint and risk assessment of cellular, genetic, and coagulation factors can have prognostic value and contribute to the choice of effective treatment and prevention of thrombosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

WBCs:

White blood cells

RBCs:

Red blood cells

ROS:

Reactive oxygen species

MPV:

Mean platelet volume

TXA2:

Thromboxane-A2

ADP:

Adenosine diphosphate

sCD40L:

Soluble- CD40 ligand

MPs:

Microparticles

vWF:

Von Willebrand factor

ECs:

Endothelial cells

TM:

Thrombomodulin

PAI-1:

Plasminogen- activator inhibitor

TG:

Thrombin generation

4G:

4-Guanosine sequence

5G:

5-Guanosine sequence

TF:

Tissue factor

NOS3:

Nitric oxide synthase-3

NO:

Nitric oxide

MTHF:

Methylenetetrahydrofolate reductase

TFPI:

Tissue factor pathway inhibitor

CAL:

Calreticulin

References

  1. Małecki R, Gacka M, Kuliszkiewicz-Janus M, Jakobsche-Policht U, Kwiatkowski J, Adamiec R et al (2016) Altered plasma fibrin clot properties in essential thrombocythemia. Platelets 272:110–116

    Google Scholar 

  2. Pósfai É, Marton I, Borbényi Z, Nemes A (2016) Myocardial infarction as a thrombotic complication of essential thrombocythemia and polycythemia vera. Anatol J Cardiol 16(6):397–402

    PubMed  PubMed Central  Google Scholar 

  3. Alipanahzadeh H, Ghulamreza R, Shokouhian M, Bagheri M, Maleknia M (2019) Deep vein thrombosis: a less noticed complication in hematologic malignancies and immunologic disorders. J Thromb Thrombolysis. https://doi.org/10.1007/s11239-019-02005-6

    Article  PubMed  Google Scholar 

  4. Vannucchi AM (2010) Insights into the pathogenesis and management of thrombosis in polycythemia vera and essential thrombocythemia. Intern Emerg Med 5(3):177–184

    Article  PubMed  Google Scholar 

  5. Buxhofer-Ausch V, Steurer M, Sormann S, Schloegl E, Schimetta W, Gisslinger B et al (2016) Influence of platelet and white blood cell counts on major thrombosis—analysis from a patient registry in essential thrombocythemia. Eur J Haematol 97(6):511–516

    Article  CAS  PubMed  Google Scholar 

  6. Marchetti M, Tartari CJ, Russo L, Panova-Noeva M, Leuzzi A, Rambaldi A et al (2014) Phospholipid-dependent procoagulant activity is highly expressed by circulating microparticles in patients with essential thrombocythemia. Am J Hematol 89(1):68–73

    Article  CAS  PubMed  Google Scholar 

  7. Stankowska K, Gadomska G, Boinska J, Michalska M, Bartoszewska-Kubiak A, Rość D (2016) Extrinsic blood coagulation pathway and risk factors for thrombotic events in patients with essential thrombocythemia. Pol Arch Med Wewn 126(5):340–346

    PubMed  Google Scholar 

  8. De Stefano V, Za T, Rossi E, Vannucchi AM, Ruggeri M, Elli E et al (2010) Leukocytosis is a risk factor for recurrent arterial thrombosis in young patients with polycythemia vera and essential thrombocythemia. Am J Hematol 85(2):97–100

    PubMed  Google Scholar 

  9. Lussana F, Carobbio A, Salmoiraghi S, Guglielmelli P, Vannucchi AM, Bottazzi B et al (2017) Driver mutations (JAK2V617F, MPLW515L/K or CALR), pentraxin-3 and C-reactive protein in essential thrombocythemia and polycythemia vera. J Hematol Oncol 10(1):54

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Duchemin J, Ugo V, Ianotto JC, Lecucq L, Mercier B, Abgrall JF (2010) Increased circulating procoagulant activity and thrombin generation in patients with myeloproliferative neoplasms. Thromb Res 126(3):238–242

    Article  CAS  PubMed  Google Scholar 

  11. Trifa AP, Cucuianu A, Popp RA, Coadă CA, Costache RM, Militaru MS et al (2014) The relationship between factor V Leiden, prothrombin G20210A, and MTHFR mutations and the first major thrombotic episode in polycythemia vera and essential thrombocythemia. Ann Hematol 93(2):203–209

    Article  CAS  PubMed  Google Scholar 

  12. Finazzi G, Rambaldi A, Guerini V, Carobbo A, Barbui T (2007) Risk of thrombosis in patients with essential thrombocythemia and polycythemia vera according to JAK2 V617F mutation status. Haematologica 92(1):135–136

    Article  PubMed  Google Scholar 

  13. Lim Y, Lee JO, Kim SH, Kim JW, Kim YJ, Lee KW et al (2015) Prediction of thrombotic and hemorrhagic events during polycythemia vera or essential thrombocythemia based on leukocyte burden. Thromb Res 135(5):846–851

    Article  CAS  PubMed  Google Scholar 

  14. Falanga A, Marchetti M, Barbui T, Smith CW (2005) Pathogenesis of thrombosis in essential thrombocythemia and polycythemia vera: the role of neutrophils. Semin Hematol 42(4):239–247

    Article  CAS  PubMed  Google Scholar 

  15. Stief TW (2004) Regulation of hemostasis by singlet-oxygen (1DeltaO2*). Curr Vasc Pharmacol 2(4):357–362

    Article  CAS  PubMed  Google Scholar 

  16. Musolino C, Allegra A, Saija A, Alonci A, Russo S, Spatari G et al (2012) Changes in advanced oxidation protein products, advanced glycation end products, and s-nitrosylated proteins, in patients affected by polycythemia vera and essential thrombocythemia. Clin Biochem 45(16–17):1439–1443

    Article  CAS  PubMed  Google Scholar 

  17. Sambrano GR, Huang W, Faruqi T, Mahrus S, Craik C, Coughlin SR (2000) Cathepsin G activates protease-activated receptor-4 in human platelets. J Biol Chem 275(10):6819–6823

    Article  CAS  PubMed  Google Scholar 

  18. Lindquist Liljeqvist M, Silveira A, Hultgren R, Frebelius S, Lengquist M, Engström J et al (2018) Neutrophil elastase-derived fibrin degradation products indicate presence of abdominal aortic aneurysms and correlate with intraluminal thrombus volume. Thromb Haemost 118(2):329–339

    Article  PubMed  Google Scholar 

  19. David A, Kacher Y, Specks U, Aviram I (2003) Interaction of proteinase 3 with CD11b/CD18 (beta2 integrin) on the cell membrane of human neutrophils. J Leukoc Biol 74(4):551–557

    Article  CAS  PubMed  Google Scholar 

  20. Savran Karadeniz M, Alp Enişte I, Şentürk Çiftçi H, Usta S, Tefik T, Şanlı Ö et al (2019) Neutrophil gelatinase-associated lipocalin significantly correlates with ischemic damage in patients undergoing laparoscopic partial nephrectomy. Balkan Med J 36(2):121–128

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Xu S, Venge P (2000) Lipocalins as biochemical markers of disease. Biochim Biophys Acta 1482(1–2):298–307

    Article  CAS  PubMed  Google Scholar 

  22. Krzemień G, Pańczyk-Tomaszewska M, Adamczuk D, Kotuła I, Demkow U, Szmigielska A (2018) Neutrophil gelatinase-associated lipocalin: a biomarker for early diagnosis of urinary tract infections in infants. Adv Exp Med Biol 1047:71–80

    Article  PubMed  CAS  Google Scholar 

  23. Lim R, Ahmed N, Borregaard N, Riley C, Wafai R, Thompson EW et al (2007) Neutrophil gelatinase-associated lipocalin (NGAL) an early-screening biomarker for ovarian cancer: NGAL is associated with epidermal growth factor-induced epithelio-mesenchymal transition. Int J Cancer 120(11):2426–2434

    Article  CAS  PubMed  Google Scholar 

  24. Laurell H, Bouisson M, Berthelemy P, Rochaix P, Dejean S, Besse P et al (2006) Identification of biomarkers of human pancreatic adenocarcinomas by expression profiling and validation with gene expression analysis in endoscopic ultrasound-guided fine needle aspiration samples. World J Gastroenterol 12(21):3344–3351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Allegra A, Alonci A, Bellomo G, Campo S, Cannavò A, Penna G et al (2011) Increased serum levels of neutrophil gelatinase-associated lipocalin in patients with essential thrombocythemia and polycythemia vera. Leuk Lymphoma 52(1):101–107

    Article  CAS  PubMed  Google Scholar 

  26. Gremmel T, Koppensteiner R, Kaider A, Eichelberger B, Mannhalter C, Panzer S (2015) Impact of variables of the P-selectin - P-selectin glycoprotein ligand-1 axis on leukocyte-platelet interactions in cardiovascular disease. Thromb Haemost 113(4):806–812

    Article  PubMed  Google Scholar 

  27. Sanchez S, Ewton A (2006) Essential thrombocythemia: a review of diagnostic and pathologic features. Arch Pathol Lab Med 130(8):1144–1150

    PubMed  Google Scholar 

  28. Vannucchi AM, Barbui T (2007) Thrombocytosis and thrombosis. Hematol Am Soc Hematol Educ Program. https://doi.org/10.1182/asheducation-2007.1.363

    Article  Google Scholar 

  29. Falanga A, Marchetti M, Vignoli A, Balducci D, Barbui T (2005) Leukocyte-platelet interaction in patients with essential thrombocythemia and polycythemia vera. Exp Hematol 33(5):523–530

    Article  CAS  PubMed  Google Scholar 

  30. Falanga A, Marchetti M, Evangelista V, Vignoli A, Licini M, Balicco M et al (2000) Polymorphonuclear leukocyte activation and hemostasis in patients with essential thrombocythemia and polycythemia vera. Blood 96(13):4261–4266

    Article  CAS  PubMed  Google Scholar 

  31. Michiels JJ, Berneman Z, Schroyens W, Finazzi G, Budde U, van Vliet HH (2006) The paradox of platelet activation and impaired function: platelet-von Willebrand factor interactions, and the etiology of thrombotic and hemorrhagic manifestations in essential thrombocythemia and polycythemia vera. Semin Thromb Hemost 32(6):589–604

    Article  CAS  PubMed  Google Scholar 

  32. Treliński J, Tybura M, Smolewski P, Robak T, Chojnowski K (2009) The influence of low-dose aspirin and hydroxyurea on platelet-leukocyte interactions in patients with essential thrombocythemia. Blood Coagul Fibrinolysis 20(8):646–651

    Article  PubMed  CAS  Google Scholar 

  33. Abdulkarim K, Ridell B, Johansson P, Kutti J, Safai-Kutti S, Andréasson B (2011) The impact of peripheral blood values and bone marrow findings on prognosis for patients with essential thrombocythemia and polycythemia vera. Eur J Haematol 86(2):148–155

    Article  PubMed  Google Scholar 

  34. Maleknia M, Valizadeh A, Pezeshki SMS, Saki N (2020) Immunomodulation in leukemia: cellular aspects of anti-leukemic properties. Clin Transl Oncol 22(1):1–10

    Article  CAS  PubMed  Google Scholar 

  35. Shahrabi S, Maleknia M, Tavakolifar Y, Zayeri DZ, Saki N (2019) Neutropenia and leukemia development: genetic risk factors and prognosis. Leuk Lymphoma 60(14):3363–3374

    Article  PubMed  Google Scholar 

  36. Panova-Noeva M, Marchetti M, Spronk HM, Russo L, Diani E, Finazzi G et al (2011) Platelet-induced thrombin generation by the calibrated automated thrombogram assay is increased in patients with essential thrombocythemia and polycythemia vera. Am J Hematol 86(4):337–342

    Article  PubMed  Google Scholar 

  37. Maleknia M, Ansari N, Haybar H, Maniati M, Saki N (2020) Inflammatory growth factors and in-stent restenosis: effect of cytokines and growth factors SN comprehensive. Clin Med. https://doi.org/10.1007/s42399-020-00240-0

    Article  Google Scholar 

  38. Ahnadi CE, Sabrinah Chapman E, Lépine M, Okrongly D, Pujol-Moix N, Hernández A et al (2003) Assessment of platelet activation in several different anticoagulants by the Advia 120 hematology system, fluorescence flow cytometry, and electron microscopy. Thromb Haemost 90(5):940–948

    CAS  PubMed  Google Scholar 

  39. Milovanovic M, Lotfi K, Lindahl T, Hallert C, Järemo P (2010) Platelet density distribution in essential thrombocythemia. Pathophysiol Haemost Thromb 37(1):35–42

    Article  PubMed  CAS  Google Scholar 

  40. Falanga A, Marchetti M, Vignoli A, Balducci D, Russo L, Guerini V et al (2007) V617F JAK-2 mutation in patients with essential thrombocythemia: relation to platelet, granulocyte, and plasma hemostatic and inflammatory molecules. Exp Hematol 35(5):702–711

    Article  CAS  PubMed  Google Scholar 

  41. Heemskerk JW, Bevers EM, Lindhout T (2002) Platelet activation and blood coagulation. Thromb Haemost 88(2):186–193

    CAS  PubMed  Google Scholar 

  42. George FD (2008) Microparticles in vascular diseases. Thromb Res 122(Suppl 1):S55–S59

    Article  CAS  PubMed  Google Scholar 

  43. Panova-Noeva M, Marchetti M, Russo L, Tartari CJ, Leuzzi A, Finazzi G et al (2013) ADP-induced platelet aggregation and thrombin generation are increased in essential thrombocythemia and polycythemia vera. Thromb Res 132(1):88–93

    Article  CAS  PubMed  Google Scholar 

  44. Kim S, Kunapuli SP (2011) P2Y12 receptor in platelet activation. Platelets 22(1):56–60

    CAS  PubMed  Google Scholar 

  45. Leon C, Alex M, Klocke A, Morgenstern E, Moosbauer C, Eckly A et al (2004) Platelet ADP receptors contribute to the initiation of intravascular coagulation. Blood 103(2):594–600

    Article  CAS  PubMed  Google Scholar 

  46. Maugeri N, Rovere-Querini P, Evangelista V, Covino C, Capobianco A, Bertilaccio MT et al (2009) Neutrophils phagocytose activated platelets in vivo: a phosphatidylserine, P-selectin, and {beta}2 integrin-dependent cell clearance program. Blood 113(21):5254–5265

    Article  CAS  PubMed  Google Scholar 

  47. Maugeri N, Malato S, Femia EA, Pugliano M, Campana L, Lunghi F et al (2011) Clearance of circulating activated platelets in polycythemia vera and essential thrombocythemia. Blood 118(12):3359–3366

    Article  CAS  PubMed  Google Scholar 

  48. Viallard JF, Solanilla A, Gauthier B, Contin C, Déchanet J, Grosset C et al (2002) Increased soluble and platelet-associated CD40 ligand in essential thrombocythemia and reactive thrombocytosis. Blood 99(7):2612–2614

    Article  CAS  PubMed  Google Scholar 

  49. Bilgir F, Bilgir O, Kebapcilar L, Calan M, Ozdemirkiran F, Cinali T et al (2012) Soluble CD40 ligand, high sensitive C-reactive protein and fetuin-A levels in patients with essential thrombocythemia. Transfus Apher Sci 46(1):67–71

    Article  PubMed  Google Scholar 

  50. Treliński J, Chojnowski K, Cebula-Obrzut B, Smolewski P (2012) Impaired apoptosis of megakaryocytes and bone marrow mononuclear cells in essential thrombocythemia: correlation with JAK2V617F mutational status and cytoreductive therapy. Med Oncol 29(4):2388–2395

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Reményi G, Szász R, Debreceni IB, Szarvas M, Batár P, Nagy B Jr et al (2013) Comparison of coated-platelet levels in patients with essential thrombocythemia with and without hydroxyurea treatment. Platelets 24(6):486–492

    Article  PubMed  CAS  Google Scholar 

  52. Trappenburg MC, van Schilfgaarde M, Marchetti M, Spronk HM, ten Cate H, Leyte A et al (2009) Elevated procoagulant microparticles expressing endothelial and platelet markers in essential thrombocythemia. Haematologica 94(7):911–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tesselaar ME, Romijn FP, Van Der Linden IK, Prins FA, Bertina RM, Osanto S (2007) Microparticle-associated tissue factor activity: a link between cancer and thrombosis? J Thromb Haemost 5(3):520–527

    Article  CAS  PubMed  Google Scholar 

  54. Roldán V, Marín F, Lip GY, Blann AD (2003) Soluble E-selectin in cardiovascular disease and its risk factors. A review of the literature. Thromb Haemost 90(6):1007–1020

    Article  PubMed  CAS  Google Scholar 

  55. Mezouar S, Mege D, Darbousset R, Farge D, Debourdeau P, Dignat-George F et al (2014) Involvement of platelet-derived microparticles in tumor progression and thrombosis. Semin Oncol 41(3):346–358

    Article  CAS  PubMed  Google Scholar 

  56. Pereira J, Alfaro G, Goycoolea M, Quiroga T, Ocqueteau M, Massardo L et al (2006) Circulating platelet-derived microparticles in systemic lupus erythematosus. Association with increased thrombin generation and procoagulant state. Thromb Haemost 95(1):94–99

    Article  CAS  PubMed  Google Scholar 

  57. Spronk HM, Dielis AW, De Smedt E, van Oerle R, Fens D, Prins MH et al (2008) Assessment of thrombin generation II: validation of the calibrated automated thrombogram in platelet-poor plasma in a clinical laboratory. Thromb Haemost 100(2):362–364

    CAS  PubMed  Google Scholar 

  58. Tull SP, Bevins A, Kuravi SJ, Satchell SC, Al-Ani B, Young SP et al (2012) PR3 and elastase alter PAR1 signaling and trigger vWF release via a calcium-independent mechanism from glomerular endothelial cells. PLoS ONE 7(8):e43916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. van Rooy MJ, Pretorius E (2016) Platelet interaction with erythrocytes and propensity to aggregation in essential thrombocythaemia. Lancet 387(10024):1210

    Article  PubMed  Google Scholar 

  60. Vallés J, Santos MT, Aznar J, Martínez M, Moscardó A, Piñón M et al (2002) Platelet-erythrocyte interactions enhance alpha(IIb)beta(3) integrin receptor activation and P-selectin expression during platelet recruitment: down-regulation by aspirin ex vivo. Blood 99(11):3978–3984

    Article  PubMed  Google Scholar 

  61. De Stefano V, Rossi E, Za T, Ciminello A, Betti S, Luzzi C et al (2011) JAK2 V617F mutational frequency in essential thrombocythemia associated with splanchnic or cerebral vein thrombosis. Am J Hematol 86(6):526–528

    Article  PubMed  CAS  Google Scholar 

  62. Hobbs CM, Manning H, Bennett C, Vasquez L, Severin S, Brain L et al (2013) JAK2V617F leads to intrinsic changes in platelet formation and reactivity in a knock-in mouse model of essential thrombocythemia. Blood 122(23):3787–3797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. James C, Ugo V, Casadevall N, Constantinescu SN, Vainchenker W (2005) A JAK2 mutation in myeloproliferative disorders: pathogenesis and therapeutic and scientific prospects. Trends Mol Med 11(12):546–554

    Article  CAS  PubMed  Google Scholar 

  64. Coucelo M, Caetano G, Sevivas T, Almeida Santos S, Fidalgo T, Bento C et al (2014) JAK2V617F allele burden is associated with thrombotic mechanisms activation in polycythemia vera and essential thrombocythemia patients. Int J Hematol 99(1):32–40

    Article  CAS  PubMed  Google Scholar 

  65. Torregrosa JM, Ferrer-Marín F, Lozano ML, Moreno MJ, Martinez C, Anton AI et al (2016) Impaired leucocyte activation is underlining the lower thrombotic risk of essential thrombocythaemia patients with CALR mutations as compared with those with the JAK2 mutation. Br J Haematol 172(5):813–815

    Article  CAS  PubMed  Google Scholar 

  66. Vannucchi AM, Antonioli E, Guglielmelli P, Pancrazzi A, Guerini V, Barosi G et al (2008) Characteristics and clinical correlates of MPL 515W%3eL/K mutation in essential thrombocythemia. Blood 112(3):844–847

    Article  CAS  PubMed  Google Scholar 

  67. Ju MK, Fu RF, Li HY, Liu XF, Xue F, Chen YF et al (2018) Clinical Characteristic of "triple-negative" essential thrombocythaemia patients and mutation analysis by targeted Sequencing. Zhongguo Shi Yan Xue Ye Xue Za Zhi 26(4):1137–1145

    PubMed  Google Scholar 

  68. Musallam KM, Aoun EG, Mahfouz RA, Khalife M, Taher AT (2010) JAK2V617F and prothrombin G20210A gene mutations in a patient with Budd-Chiari syndrome and essential thrombocythemia. Clin Appl Thromb Hemost 16(4):472–474

    Article  CAS  PubMed  Google Scholar 

  69. Denninger MH, Chaït Y, Casadevall N, Hillaire S, Guillin MC, Bezeaud A et al (2000) Cause of portal or hepatic venous thrombosis in adults: the role of multiple concurrent factors. Hepatology 31(3):587–591

    Article  CAS  PubMed  Google Scholar 

  70. Mehtap O, Ateşoğlu EB, Tarkun P, Gönüllü E, Keski H, Topçu Y et al (2012) The association between gene polymorphisms and leukocytosis with thrombotic complications in patients with essential thrombocythemia and polycythemia vera. Turk J Haematol 29(2):162–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hoekstra T, Geleijnse JM, Kluft C, Giltay EJ, Kok FJ, Schouten EG (2003) 4G/4G genotype of PAI-1 gene is associated with reduced risk of stroke in elderly. Stroke 34(12):2822–2828

    Article  CAS  PubMed  Google Scholar 

  72. Robien K, Ulrich CM (2003) 5,10-Methylenetetrahydrofolate reductase polymorphisms and leukemia risk: a HuGE minireview. Am J Epidemiol 157(7):571–582

    Article  PubMed  Google Scholar 

  73. Buxhofer-Ausch V, Olcaydu D, Gisslinger B, Schalling M, Frantal S, Thiele J et al (2014) Decanucleotide insertion polymorphism of F7 significantly influences the risk of thrombosis in patients with essential thrombocythemia. Eur J Haematol 93(2):103–111

    Article  CAS  PubMed  Google Scholar 

  74. Zhang X, Lynch AI, Davis BR, Ford CE, Boerwinkle E, Eckfeldt JH et al (2012) Pharmacogenetic association of NOS3 variants with cardiovascular disease in patients with hypertension: the GenHAT study. PLoS ONE 7(3):e34217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mo X, Hao Y, Yang X, Chen S, Lu X, Gu D (2011) Association between polymorphisms in the coagulation factor VII gene and coronary heart disease risk in different ethnicities: a meta-analysis. BMC Med Genet 12:107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Girelli D, Russo C, Ferraresi P, Olivieri O, Pinotti M, Friso S et al (2000) Polymorphisms in the factor VII gene and the risk of myocardial infarction in patients with coronary artery disease. N Engl J Med 343(11):774–780

    Article  CAS  PubMed  Google Scholar 

  77. Cacciola RR, Cipolla A, Di Francesco E, Giustolisi R, Cacciola E (2005) Treatment of symptomatic patients with essential thrombocythemia: effectiveness of anagrelide. Am J Hematol 80(1):81–83

    Article  PubMed  Google Scholar 

  78. Szumowska A, Galar M, Bolkun L, Kloczko J (2016) Plasma concentrations of protein Z and protein Z-dependent protease inhibitor in patients with essential thrombocythemia. Clin Appl Thromb Hemost 22(7):679–684

    Article  CAS  PubMed  Google Scholar 

  79. Tabatabai A, Fiehler R, Broze GJ Jr (2001) Protein Z circulates in plasma in a complex with protein Z-dependent protease inhibitor. Thromb Haemost 85(4):655–660

    Article  CAS  PubMed  Google Scholar 

  80. Brogren H, Wallmark K, Deinum J, Karlsson L, Jern S (2011) Platelets retain high levels of active plasminogen activator inhibitor 1. PLoS ONE 6(11):e26762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Briere J, Guilmin F (2001) Management of patients with essential thrombocythemia: current concepts and perspectives. Pathol Biol (Paris) 49(2):178–183

    Article  CAS  Google Scholar 

  82. Undas A (2014) Fibrin clot properties and their modulation in thrombotic disorders. Thromb Haemost 112(1):32–42

    CAS  PubMed  Google Scholar 

  83. Tefferi A, Barbui T (2019) Polycythemia vera and essential thrombocythemia: 2019 update on diagnosis, risk-stratification and management. Am J Hematol 94(1):133–143

    Article  PubMed  Google Scholar 

  84. Moulard O, Mehta J, Fryzek J, Olivares R, Iqbal U, Mesa RA (2014) Epidemiology of myelofibrosis, essential thrombocythemia, and polycythemia vera in the European Union. Eur J Haematol 92(4):289–297

    Article  PubMed  Google Scholar 

  85. Tefferi A, Elliott M (2007) Thrombosis in myeloproliferative disorders: prevalence, prognostic factors, and the role of leukocytes and JAK2V617F. Semin Thromb Hemost 33(4):313–320

    Article  CAS  PubMed  Google Scholar 

  86. Finazzi G, Carobbio A, Guglielmelli P, Cavalloni C, Salmoiraghi S, Vannucchi AM et al (2014) Calreticulin mutation does not modify the IPSET score for predicting the risk of thrombosis among 1150 patients with essential thrombocythemia. Blood 124(16):2611–2612

    Article  CAS  PubMed  Google Scholar 

  87. Barbui T, Barosi G, Birgegard G, Cervantes F, Finazzi G, Griesshammer M et al (2011) Philadelphia-negative classical myeloproliferative neoplasms: critical concepts and management recommendations from European LeukemiaNet. J Clin Oncol 29(6):761–770

    Article  PubMed  PubMed Central  Google Scholar 

  88. Barbui T, Finazzi G, Carobbio A, Thiele J, Passamonti F, Rumi E et al (2012) Development and validation of an international prognostic score of thrombosis in World Health Organization-essential thrombocythemia (IPSET-thrombosis). Blood 120(26):5128–5133 quiz 252

    Article  CAS  PubMed  Google Scholar 

  89. Haider M, Gangat N, Lasho T, Abou Hussein AK, Elala YC, Hanson C et al (2016) Validation of the revised international prognostic score of thrombosis for essential thrombocythemia (IPSET-thrombosis) in 585 mayo clinic patients. Am J Hematol 91(4):390–394

    Article  PubMed  Google Scholar 

  90. Hashimoto Y, Nakamae H, Tanaka T, Omura H, Horiuchi M, Yoshimura T et al (2018) Validation of previous prognostic models for thrombosis and exploration of modified models in patients with essential thrombocythemia. Eur J Haematol 101(4):508–513

    Article  PubMed  Google Scholar 

  91. Tefferi A, Barbui T (2017) Polycythemia vera and essential thrombocythemia: 2017 update on diagnosis, risk-stratification, and management. Am J Hematol 92(1):94–108

    Article  CAS  PubMed  Google Scholar 

  92. Grinfeld J, Nangalia J, Baxter EJ, Wedge DC, Angelopoulos N, Cantrill R et al (2018) Classification and personalized prognosis in myeloproliferative neoplasms. N Engl J Med 379(15):1416–1430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Pikman Y, Lee BH, Mercher T, McDowell E, Ebert BL, Gozo M et al (2006) MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med 3(7):e270

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Malcovati L, Rumi E, Cazzola M (2014) Somatic mutations of calreticulin in myeloproliferative neoplasms and myelodysplastic/myeloproliferative neoplasms. Haematologica 99(11):1650–1652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wolanskyj AP, Schwager SM, McClure RF, Larson DR, Tefferi A (2006) Essential thrombocythemia beyond the first decade: life expectancy, long-term complication rates, and prognostic factors. Mayo Clin Proc 81(2):159–166

    Article  PubMed  Google Scholar 

  96. Patrono C, Rocca B, De Stefano V (2013) Platelet activation and inhibition in polycythemia vera and essential thrombocythemia. Blood 121(10):1701–1711

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank all our colleagues in Allied Health Sciences School, Ahvaz Jundishapur University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Contributions

Dr. NS conceived the manuscript and revised it. MM, SS, MG, and TV wrote the manuscript and prepared tables and figures.

Corresponding author

Correspondence to Najmaldin Saki.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study, informed consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maleknia, M., Shahrabi, S., Ghanavat, M. et al. Essential thrombocythemia: a hemostatic view of thrombogenic risk factors and prognosis. Mol Biol Rep 47, 4767–4778 (2020). https://doi.org/10.1007/s11033-020-05536-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05536-x

Keywords

Navigation