Skip to main content
Log in

Genome-wide identification of flowering time genes in cucurbit plants and revealed a gene ClGA2/KS associate with adaption and flowering of watermelon

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Watermelon (Citrullus lanatus) is one of the major cucurbit crop that cultivated all over the world. Adaptability and flowering time are important agronomic characteristics that influence the quality and yield of watermelon, however, the molecular basis underlying these traits were still unclear. In this study, we identified 166, 182, 178, and 279 flowering genes in watermelon, melon, cucumber and pumpkin, respectively, and found that a lot of genes in the photoperiodic, autonomous, and vernalization pathways were absence in the four cucurbits. A higher ratio of flowering time genes was identified in the hormone pathway in cucurbits than in Arabidopsis, and a higher average ka/ks value of hormone pathway genes than the photoperiodic and vernalization pathway genes was identified in watermelon. Moreover, a gene ClGA2/KS (Cla005482) were found to associated with ecotype differentiation, flowering time, and whole growth period in watermelon. This study added knowledge to the molecular basis of flowering time regulation in cucurbits, and the molecule marker of ClGA2/KS gene may facilitate the breeding progress for selecting watermelon varieties with superior adaption and flowering time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Erickson DL, Smith BD, Clarke AC, Sandweiss DH, Tuross N (2005) An Asian origin for a 10,000-year-old domesticated plant in the Americas. Proc Natl Acad Sci 102(51):18315–18320

    Article  CAS  Google Scholar 

  2. Boss PK, Bastow RM, Mylne JS, Dean C (2004) Multiple pathways in the decision to flower: enabling, promoting, and resetting. Plant Cell 16(Suppl):S18–S31

    Article  CAS  Google Scholar 

  3. Andres F, Coupland G (2012) The genetic basis of flowering responses to seasonal cues. Nat Rev Genet 13(9):627–639

    Article  CAS  Google Scholar 

  4. Bouche F, Lobet G, Tocquin P, Perilleux C (2016) FLOR-ID: an interactive database of flowering-time gene networks in Arabidopsis thaliana. Nucleic Acids Res 44(D1):D1167–D1171

    Article  CAS  Google Scholar 

  5. Fornara F, de Montaigu A, Coupland G (2010) SnapShot: control of flowering in Arabidopsis. Cell 141(3):550, 550 e551-552

    Article  Google Scholar 

  6. Srikanth A, Schmid M (2011) Regulation of flowering time: all roads lead to Rome. Cell Mol Life Sci 68(12):2013–2037

    Article  CAS  Google Scholar 

  7. Valverde F, Mouradov A, Soppe W, Ravenscroft D, Samach A, Coupland G (2004) Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 303(5660):1003–1006

    Article  CAS  Google Scholar 

  8. Yoo SK, Chung KS, Kim J, Lee JH, Hong SM, Yoo SJ, Yoo SY, Lee JS, Ahn JH (2005) Constans activates suppressor of overexpression of constans 1 through flowering locus T to promote flowering in Arabidopsis. Plant Physiol 139(2):770–778

    Article  CAS  Google Scholar 

  9. Sheldon CC, Rouse DT, Finnegan EJ, Peacock WJ, Dennis ES (2000) The molecular basis of vernalization: the central role of FLOWERING LOCUS C (FLC). P Natl Acad Sci 97(6):3753–3758

    Article  CAS  Google Scholar 

  10. Johanson U (2000) Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science 290(5490):344–347

    Article  CAS  Google Scholar 

  11. Mutasa-Gottgens E, Hedden P (2009) Gibberellin as a factor in floral regulatory networks. J Exp Bot 60(7):1979–1989

    Article  Google Scholar 

  12. Sun TP (2011) The molecular mechanism and evolution of the GA-GID1-DELLA signaling module in plants. Curr Biol 21(9):R338–R345

    Article  CAS  Google Scholar 

  13. Fazio G, Staub JE, Stevens MR (2003) Genetic mapping and QTL analysis of horticultural traits in cucumber (Cucumis sativus L.) using recombinant inbred lines. Theor Appl Genet 107(5):864–874

    Article  CAS  Google Scholar 

  14. Lu H, Lin T, Klein J, Wang S, Qi J, Zhou Q, Sun J, Zhang Z, Weng Y, Huang S (2014) QTL-seq identifies an early flowering QTL located near flowering locus T in cucumber. Theor Appl Genet 127(7):1491–1499

    Article  Google Scholar 

  15. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93(1):77–78

    Article  CAS  Google Scholar 

  16. Zhang Z, Li J, Zhao XQ, Wang J, Wong GK, Yu J (2006) KaKs_Calculator: calculating Ka and Ks through model selection and model averaging. Genom Proteom Bioinform 4(4):259–263

    Article  CAS  Google Scholar 

  17. Wang K, Li MY, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38(16):e164

    Article  Google Scholar 

  18. Guo SG, Zhang JG, Sun HH, Salse J, Lucas WJ, Zhang HY et al (2013) The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat Genet 45(1):51–58

    Article  CAS  Google Scholar 

  19. Yamaguchi S, Sun TP, KawaIDe H, Kamiya Y (1998) The GA2 locus of ArabIDopsis thaliana encodes ent-kaurene synthase of gibberellin biosynthesis. Plant Physiol 116(4):1271–1278

    Article  CAS  Google Scholar 

  20. Li HJ, Fan YH, Yu JY, Chai L, Zhang JF, Jiang J, Cui C, Zheng BC, Jiang LC, Lu K (2018) Genome-wIDe IDentification of flowering-time genes in Brassica Species and reveals a correlation between selective pressure and expression patterns of vernalization-pathway genes in Brassica napus Int J Molecular Sci 19(11):3632

    Article  Google Scholar 

  21. Suárez-López P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G (2001) CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410:1116–1120

    Article  Google Scholar 

  22. Robson F, Costa MMR, Hepworth SR, Vizir I, Pineiro M, Reeves PH, Putterill J, Coupland G (2001) Functional importance of conserved domains in the fowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants. Plant J 28(6):619–631

    Article  CAS  Google Scholar 

  23. Hassidim M, Harir Y, Yakir E, Kron I, Green RM (2009) Over-expression of CONSTANS-LIKE 5 can induce flowering in short-day grown Arabidopsis. Planta 230(3):481–491

    Article  CAS  Google Scholar 

  24. Cheng XF, Wang ZY (2005) Overexpression of COL9, a CONSTANS-LIKE gene, delays flowering by reducing expression of CO and FT in Arabidopsis thaliana. Plant J 43(5):758–768

    Article  CAS  Google Scholar 

  25. Wang P, Wang SB, Chen Y, Xu XM, Guang XM, Zhang YH (2019) Genome-wide analysis of the MADS-Box gene family in watermelon. Comput Biol Chem.https://doi.org/10.1016/j.compbiolchem.2019.04.013

    Article  PubMed  Google Scholar 

  26. Pimenta Lange MJ, Lange T (2006) Gibberellin biosynthesis and the regulation of plant development. Plant Biol 8(3):281–290

    Article  CAS  Google Scholar 

  27. Sun TP, Kamiya Y (1994) The Arabidopsis GA1 locus encodes the cyclase ent-kaurene synthetase A of gibberellin biosynthesis. Plant Cell 6(10):1509–1518

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Sponsel VM, Schmidt FW, Porter SG, Nakayama M, Kohlstruk S, Estelle M (1997) Characterization of new gibberellin-responsive semidwarf mutants of Arabidopsis. Plant Physiol 115(3):1009–1020

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Ministry of Science and Technology of The People’s Republic of China (Grant No. 2018YFD0100704), the Ministry of Agriculture of China (CARS-25), and the Agricultural science and technology innovation center project of Hubei (Grant No. 2019-620-000-001-07).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Licong Yi or Zhaoyi Dai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, L., Wang, Y., Huang, X. et al. Genome-wide identification of flowering time genes in cucurbit plants and revealed a gene ClGA2/KS associate with adaption and flowering of watermelon. Mol Biol Rep 47, 1057–1065 (2020). https://doi.org/10.1007/s11033-019-05200-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-019-05200-z

Keywords

Navigation