Skip to main content
Log in

Expression, purification, characterization and in silico analysis of newly isolated hydrocarbon degrading bleomycin resistance dioxygenase

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

In the present investigation, we report cloning, expression, purification and characterization of a novel Bleomycin Resistance Dioxygenase (BRPD). His-tagged fusion protein was purified to homogeneity using Ni-NTA affinity chromatography, yielding 1.2 mg of BRPD with specific activity of 6.25 U mg−1 from 600 ml of E. coli culture. Purified enzyme was a dimer with molecular weight ~ 26 kDa in SDS-PAGE and ~ 73 kDa in native PAGE analysis. The protein catalyzed breakdown of hydrocarbon substrates, including catechol and hydroquinone, in the presence of metal ions, as characterized via spectrophotometric analysis of the enzymatic reactions. Bleomycin binding was proven using the EMSA gel retardation assay, and the putative bleomycin binding site was further determined by in silico analysis. Molecular dynamic simulations revealed that BRPD attains octahedral configuration in the presence of Fe2+ ion, forming six co-ordinate complexes to degrade hydroquinone-like molecules. In contrary, in the presence of Zn2+ ion BRPD adopts tetrahedral configuration, which enables degradation of catechol-like molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang T, Wooster MJ, Green DC, Main B (2015) New field-based agricultural biomass burning trace gas, PM 2.5, and black carbon emission ratios and factors measured in situ at crop residue fires in Eastern China. Atmos Environ 121:22–34

    CAS  Google Scholar 

  2. Fu B, Xu T, Cui Z, Ng HL, Wang K, Li J, Li QX (2018) Mutation of phenylalanine-223 to leucine enhances transformation of benzo[a]pyrene by ring-hydroxylating dioxygenase of Sphingobium sp. FB3 by increasing accessibility of the catalytic site. J Agric Food Chem 66(5):1206–1213

    CAS  PubMed  Google Scholar 

  3. Santos DF, Istvan P, Noronha EF, Quirino BF, Krüger RH (2015) New dioxygenase from metagenomic library from Brazilian soil: insights into antibiotic resistance and bioremediation. Biotechnol Lett 37(9):1809–1817

    PubMed  Google Scholar 

  4. Arora PK, Kumar M, Chauhan A, Raghava GP, Jain RK (2009) OxDBase: a database of oxygenases involved in biodegradation. BMC Res Notes 2:67

    PubMed  PubMed Central  Google Scholar 

  5. Cole JR, Konstantinidis K, Farris RJ, Tiedje JM (2010) Microbial diversity and phylogeny: extending from rRNAs to genomes. In: Liu W-T, Jansson JK (eds) Environmental molecular microbiology. Caister Academic Press, Norfolk, pp 1–19

    Google Scholar 

  6. Spain JC, Gibson DT (1991) Pathway for biodegradation of para-nitrophenol in a Moraxella sp. Appl Environ Microbiol 57(3):812–819

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang S, Sun W, Xu L, Zheng X, Chu X, Tian J, Wu N, Fan Y (2012) Identification of the para-nitrophenol catabolic pathway, and characterization of three enzymes involved in the hydroquinone pathway, in Pseudomonas sp. 1-7. BMC Microbiol 12:27

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Miyauchi K, Adachi Y, Nagata Y, Takagi M (1999) Cloning and sequencing of a novel meta-cleavage dioxygenase gene whose product is involved in degradation of gamma-hexachlorocyclohexane in Sphingomonas paucimobilis. J Bacteriol 181(21):6712–6719

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Moonen MJH, Kamerbeek NM, Westphal AH, Boeren SA, Janssen DB, Fraaije MW, van Berkel WJH (2008) Elucidation of the 4 hydroxyacetophenone catabolic pathway in Pseudomonas fluorescens ACB. J Bacteriol 190(15):5190–5198

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Takenaka S, Okugawa S, Kadowaki M, Murakami S, Aoki K (2003) The metabolic pathway of 4-aminophenol in Burkholderia sp strain AK-5 differs from that of aniline and aniline with C-4 substituents. Appl Environ Microbiol 69(9):5410–5413

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Kolvenbach BA, Lenz M, Benndorf D, Rapp E, Fousek J, Vlcek C, Schäffer A, Gabriel FL, Kohler HP, Corvini PF (2011) Purification and characterization of hydroquinone dioxygenase from Sphingomonas sp. strain TTNP3. AMB Express 1(1):8

    PubMed  PubMed Central  Google Scholar 

  12. Eltis LD, Bolin JT (1996) Evolutionary relationships among extradiol dioxygenases. J Bacteriol 178(20):5930–5937

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Hayes RP, Green AR, Nissen MS, Lewis KM, Xun L, Kang C (2013) Structural characterization of 2,6-dichloro-p-hydroquinone 1,2-dioxygenase (PcpA) from Sphingobium chlorophenolicum, a new type of aromatic ring-cleavage enzyme. Mol Microbiol 88(3):523–536

    CAS  PubMed  PubMed Central  Google Scholar 

  14. He P, Moran G (2011) Structural and mechanistic comparisons of the metal-binding members of the vicinal oxygen chelate (VOC) superfamily. J Inorg Biochem 105(10):1259–1272

    CAS  PubMed  Google Scholar 

  15. Machonkin TE, Holland PL, Smith KN, Liberman JS, Dinescu A, Cundari TR, Rocks SS (2010) Determination of the active site of Sphingobium chlorophenolicum 2,6-dichlorohydroquinone dioxygenase (PcpA). J Biol Inorg Chem 15(3):291–300

    CAS  PubMed  Google Scholar 

  16. McCarthy AA, Baker HM, Shewry SC, Patchett ML, Baker EN (2001) Crystal structure of methylmalonyl-coenzyme A epimerase from P. shermanii: a novel enzymatic function on an ancient metal binding scaffold. Structure 9(7):637–646

    CAS  PubMed  Google Scholar 

  17. Dortet L, Girlich D, Virlouvet AL, Poirel L, Nordmann P, Iorga BI, Naas T (2017) Characterization of BRPMBL, the bleomycin resistance protein associated with the carbapenemase NDM. Antimicrob Agents Chemother 61(3):2413–2416

    Google Scholar 

  18. Zhang JJ, Liu H, Xiao Y, Zhang XE, Zhou NY (2009) Identification and characterization of catabolic para-Nitrophenol 4-Monooxygenase and para- benzoquinone reductase from Pseudomonas sp. strain WBC-3. J Bacteriol 191(8):2703–2710

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Shen W, Liu W, Zhang J, Tao J, Deng H, Cao H, Cui Z (2010) Cloning and characterization of a gene cluster involved in the catabolism of p-nitrophenol from Pseudomonas putida DLL-E4. Bioresour Technol 101(19):7516–7522

    CAS  PubMed  Google Scholar 

  20. Min J, Zhang JJ, Zhou NY (2014) The gene cluster for para-Nitrophenol catabolism is responsible for 2-Chloro-4-Nitrophenol degradation in Burkholderia sp. strain SJ98. Appl Environ Microbiol 80(19):6212–6222

    PubMed  PubMed Central  Google Scholar 

  21. Dunwell JM, Purvis A, Khuri S (2004) Cupins: the most functionally diverse protein superfamily? Phytochemistry 65(1):7–17

    CAS  Google Scholar 

  22. Armstrong RN (2000) Mechanistic diversity in a metalloenzyme superfamily. Biochemistry 39(45):13625–13632

    CAS  PubMed  Google Scholar 

  23. Yin Y, Zhou NY (2010) Characterization of MnpC, a hydroquinone dioxygenase likely involved in the meta-nitrophenol degradation by Cupriavidus necator JMP134. Curr Microbiol 61(5):471–476

    CAS  PubMed  Google Scholar 

  24. Webb B, Sali A (2016) Comparative protein structure modeling using MODELLER. Curr Protoc Bioinform 86:2.9.1–2.9.37

    Google Scholar 

  25. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

    CAS  PubMed  Google Scholar 

  26. Zuckerkandl E, Pauling L (1965) Evolutionary divergence and convergence in proteins. In: Bryson V, Vogel HJ (eds) Evolving genes and proteins. Academic Press, New York, pp 97–166

    Google Scholar 

  27. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874

    CAS  Google Scholar 

  28. Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y (2015) The I-TASSER Suite: protein structure and function prediction. Nat Methods 12(1):7–8

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Ashkenazy H, Abadi S, Martz E, Chay O, Mayrose I, Pupko T, Ben-Tal N (2016) ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res 44(W1):W344–W350

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ashkenazy H, Erez E, Martz E, Pupko T, Ben-Tal N (2010) ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res 38(Web Server issue):W529–W533

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612

    CAS  PubMed  Google Scholar 

  32. Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C (2015) ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput 11(8):3696–3713

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Jorgensen WL, Chandrasekhar J, Madura JD (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926

    CAS  Google Scholar 

  34. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103(19):8577–8593

    CAS  Google Scholar 

  35. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. Comput Phys 23(3):327

    CAS  Google Scholar 

  36. Kumar R, Shaikh N, Sharma S, Garg P (2015) A comparative study of integrase binding domain of homologous LEDGF/p75 and HRP2 protein: from sequence analysis to structural characterization. Mol Simul 41(8):683–690

    CAS  Google Scholar 

  37. Kumar R, Garg P (2013) Molecular modeling and active site binding mode characterization of aspartate β-semialdehyde dehydrogenase family. Mol Inform 32(4):377–383

    CAS  PubMed  Google Scholar 

  38. Tropel D, Meyer C, Armengaud J, Jouanneau Y (2002) Ferredoxin-mediated reactivation of the chlorocatechol 2,3-dioxygenase from Pseudomonas putida GJ31. Arch Microbiol 177(4):345–351

    CAS  PubMed  Google Scholar 

  39. Mancini S, Abicht HK, Gonskikh Y, Solioz M (2015) A copper-induced quinone degradation pathway provides protection against combined copper/quinone stress in Lactococcus lactis IL1403. Mol Microbiol 95(4):645–659

    CAS  PubMed  Google Scholar 

  40. Cerdan P, Wasserfallen A, Rekik M, Timmis KN, Harayama S (1994) Substrates pecificity of catechol 2,3-dioxygenase encoded by tol plasmid pWWO of pseudomonas putida and its relationship to cell-growth. J Bacteriol 176(19):6074–6081

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Bartels I, Knackmuss HJ, Reineke W (1984) Suicide inactivation of catechol 2,3- dioxygenase from Pseudomonas putida mt-2 by 3-halocatechols. Appl Environ Microbiol 47(3):500–505

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ono K, Nozaki M, Hayaishi O (1970) Purification and some properties of protocatechuate 4,5-dioxygenase. Biochim et Biophys Acta 220(2):224–238

    CAS  Google Scholar 

  43. Guan Y, Zhu Q, Huang D, Zhao S, Jan Lo L, Peng J (2015) An equation to estimate the difference between theoretically predicted and SDS PAGE-displayed molecular weights for an acidic peptide. Sci Rep 5(1):13370

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Bergdoll M, Eltis LD, Cameron AD, Dumas P, Bolin JT (1998) All in the family: structural and evolutionary relationships among three modular proteins with diverse functions and variable assembly. Protein Sci 7(8):1661–1670

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Jafari S, Kazemi N, Ryde U, Irani M (2018) Higher flexibility of Glu-172 explains the unusual stereospecificity of glyoxalase I. Inorg Chem 57(9):4944–4958

    CAS  PubMed  Google Scholar 

  46. Cameron AD, Olin B, Ridderstrom M, Mannervik B, Jones TA (1997) Crystal structure of human glyoxalase I -evidence for gene duplication and 3D domain swapping. EMBO J 16(12):3386–3395

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Fetzner S (2012) Ring-cleaving dioxygenases with a cupin fold. Appl Environ Microbiol 78(8):2505–2514

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Schlunegger MP, Bennett MJ, Eisenberg D (1997) Oligomer formation by 3D domain swapping: a model for protein assembly and misassembly. Adv Protein Chem 50:61–122

    CAS  PubMed  Google Scholar 

  49. Saint-Jean AP, Phillips KR, Creighton DJ, Stone MJ (1998) Active monomeric and dimeric forms of Pseudomonas putida glyoxalase I: evidence for 3D domain swapping. Biochemistry 37(29):10345–10353

    CAS  PubMed  Google Scholar 

Download references

Funding

This research Grant was funded by the Science and Engineering Research Board (SERB) New Delhi, project file number: SB/YS/LS-63/2013 under fast track scheme for the young scientists. Dr PKS would like to thank SERB for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pushpender Kumar Sharma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 2 (JPEG 61 kb) Supplementary Fig. S2 Secondary structure prediction of BRPD (using I-TASSER)

11033_2019_5159_MOESM2_ESM.jpg

Supplementary material 2 (JPEG 160 kb) Supplementary Fig. S2 Multiple sequence alignment of BRPD and its homologues. The secondary structures of BRPD (QED41507) and two other putative dioxygenases (PDB 3OAJ and 1ZSW) were compared. α helices and β sheets were indicated by red and yellow highlighting respectively. Binding pocket and catalytic residues were indicated in bold. The Fe-co-ordinating residues in the BRPD were indicated with an asterisk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, V., Kumar, R., Sharma, V.K. et al. Expression, purification, characterization and in silico analysis of newly isolated hydrocarbon degrading bleomycin resistance dioxygenase. Mol Biol Rep 47, 533–544 (2020). https://doi.org/10.1007/s11033-019-05159-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-019-05159-x

Keywords

Navigation