Skip to main content
Log in

Further studies on sugar transporter (SWEET) genes in wheat (Triticum aestivum L.)

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

SWEET proteins represent one of the largest sugar transporter family in the plant kingdom and play crucial roles in plant development and stress responses. In the present study, a total of 108 TaSWEET genes distributed on all the 21 wheat chromosomes were identified using the latest whole genome sequence (as against 59 genes reported in an earlier report). These 108 genes included 14 of the 17 types reported in Arabidopsis and also included three novel types. Tandem duplications (22) and segmental duplications (5) played a significant role in the expansion of TaSWEET family. A number of cis-elements were also identified in the promoter regions of TaSWEET genes, indicating response of TaSWEET genes during development and also during biotic/abiotic stresses. The TaSWEET proteins carried 4–7 trans-membrane helices (TMHs) showing diversity in structure. Phylogenetic analysis using SWEET proteins of wheat and 8 other species gave four well-known clusters. Expression analysis involving both in silico and in planta indicated relatively higher expression of TaSWEET genes in water/heat sensitive and leaf rust resistant genotypes. The results provided insights into the functional role of TaSWEETs in biotic and abiotic stresses, which may further help in planning strategies to develop high yielding wheat varieties tolerant to environmental stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Aoki N, Hirose T, Scofield GN, Whitfeld PR, Furbank RT (2003) The sucrose transporter gene family in rice. Plant Cell Physiol 44:223–232

    Article  CAS  PubMed  Google Scholar 

  2. Lemoine R, Camera SL, Atanassova R et al (2013) Source-to sink transport of sugar and regulation by environmental factors. Front Plant Sci 4:272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sauer N (2007) Molecular physiology of higher plant sucrose transporters. FEBS Lett 581:2309–2317

    Article  CAS  PubMed  Google Scholar 

  4. Srivastava AC, Ganesan S, Ismail IO, Ayre BG (2008) Functional characterization of the Arabidopsis AtSUC2 sucrose/H+ symporter by tissue-specific complementation reveals an essential role in phloem loading but not in long-distance transport. Plant Physiol 148:200–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen LQ, Hou BH, Lalonde S et al (2010) Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468:527–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gamas P, Niebel FC, Lescure N, Cullimore J (1996) Use of a subtractive hybridization approach to identify new Medicago truncatula genes induced during root nodule development. Mol Plant Microbe Interact 9:233–242

    Article  CAS  PubMed  Google Scholar 

  7. Arteron DR, Terol-Alcayde J, Paricio N, Ring J, Bargues M, Torres A, Perez-Alonso M (1998) Saliva, a new Drosophila gene expressed in the embryonic salivary glands with homologues in plants and vertebrates. Mech Dev 75:159–162

    Article  Google Scholar 

  8. Yuan M, Wang S (2013) Rice MtN3/saliva/SWEET family genes and their homologs in cellular organisms. Mol Plant 6:665–674

    Article  CAS  PubMed  Google Scholar 

  9. Jia B, Zhu XF, Pu ZJ, Duan YX, Hao LJ, Zhang J, Chen LQ, Jeon CO, Xuan YH (2017) Integrative view of the diversity and evolution of SWEET and SemiSWEET sugar transporters. Front Plant Sci 8:2178

    Article  PubMed  PubMed Central  Google Scholar 

  10. Patil G, Valliyodan B, Deshmukh R et al (2015) Soybean (Glycine max) SWEET gene family: insights through comparative genomics, transcriptome profiling and whole genome re-sequence analysis. BMC Genom 16:520

    Article  CAS  Google Scholar 

  11. Jian H, Lu K, Yang B et al (2016) Genome-wide analysis and expression profiling of the SUC and SWEET gene families of sucrose transporters in oilseed rape (Brassica napus L.). Front. Plant Sci 7:1464

    Google Scholar 

  12. Li H, Li X, Xuan Y, Jiang J, Wei Y, Piao Z (2018) Genome wide identification and expression profiling of SWEET genes family reveals its role during Plasmodiophora brassicae-induced formation of clubroot in Brassica rapa. Front Plant Sci 9:207

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mizuno H, Kasuga S, Kawahigashi H (2016) The sorghum SWEET gene family: stem sucrose accumulation as revealed through transcriptome profiling. Biotechnol Biofuels 9:127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Manck-Gotzenberger J, Requena N (2016) Arbuscular mycorrhiza symbiosis induces a major transcriptional reprogramming of the potato SWEET sugar transporter family. Front Plant Sci 7:487

    Article  PubMed  PubMed Central  Google Scholar 

  15. Feng L, Frommer WB (2015) Structure and function of SemiSWEET and SWEET sugar transporters. Trends Biochem Sci 40:480–486

    Article  CAS  PubMed  Google Scholar 

  16. Wei X, Liu F, Chen C, Ma F, Li M (2014) The Malus domestica sugar transporter gene family: identifications based on genome and expression profiling related to the accumulation of fruit sugars. Front Plant Sci 5:569

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chong J, Piron MC, Meyer S, Merdinoglu D, Bertsch C, Mestre P (2014) The SWEET family of sugar transporters in grapevine: VvSWEET4 is involved in the interaction with Botrytis cinerea. J Exp Bot 65:6589–6601

    Article  CAS  PubMed  Google Scholar 

  18. Miao H, Sun P, Liu Q et al (2017) Genome-wide analyses of SWEET family proteins reveal involvement in fruit development and abiotic/biotic stress responses in banana. Sci Rep 7:3536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Miao L, Lv Y, Kong L et al (2018) Genome-wide identification, phylogeny, evolution, and expression patterns of MtN3/saliva/SWEET genes and functional analysis of BcNS in Brassica rapa. BMC Genom 19:174

    Article  CAS  Google Scholar 

  20. Gao Y, Wang ZY, Kumar V, Xu XF, Yuan P, Zhu XF, Li TY, Jia B, Xuan YH (2018) Genome-wide identification of the SWEET gene family in wheat. Gene 642:284–292

    Article  CAS  PubMed  Google Scholar 

  21. Chen LQ, Qu XQ, Hou BH, Sosso D, Osorio S, Fernie AR, Frommer WB (2012) Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science 335:207–211

    Article  CAS  PubMed  Google Scholar 

  22. Chen LQ, Lin IW, Qu XQ, Sosso D, McFarlane HE, Londoño A, Samuels AL, Frommer WB (2015) A cascade of sequentially expressed sucrose transporters in the seed coat and endosperm provides nutrition for the Arabidopsis embryo. Plant Cell 27:607–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Durand M, Porcheron B, Hennion N, Maurousset L, Lemoine R, Pourtau N (2016) Water deficit enhances C export to the roots in A. thaliana plants with contribution of sucrose transporters in both shoot and roots. Plant Physiol 170:1460–1479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Seo PJ, Park JM, Kang SK, Kim SG, Park CM (2011) An Arabidopsis senescence-associated protein SAG29 regulates cell viability under high salinity. Planta 233:189–200

    Article  CAS  PubMed  Google Scholar 

  25. Sosso D, Luo D, Li QB et al (2015) Seed filling in domesticated maize and rice depends on SWEET-mediated hexose transport. Nat Genet 47:1489–1493

    Article  CAS  PubMed  Google Scholar 

  26. Zhou Y, Liu L, Huang W, Yuan M, Zhou F, Li X, Lin Y (2014) Overexpression of OsSWEET5 in rice causes growth retardation and precocious senescence. Plos One 9:94210

    Article  CAS  Google Scholar 

  27. Le Hir R, Spinner L, Klemens PA et al (2015) Disruption of the sugar transporters AtSWEET11 and AtSWEET12 affects vascular development and freezing tolerance in Arabidopsis. Mol Plant 8:1687–1690

    Article  CAS  PubMed  Google Scholar 

  28. Chen LQ (2014) SWEET sugar transporters for phloem transport and pathogen nutrition. New Phytol 201:1150–1155

    Article  CAS  PubMed  Google Scholar 

  29. Antony G, Zhou J, Huang S, Li T, Liu B, White F, Yang B (2010) Rice xa13 recessive resistance to bacterial blight is defeated by induction of the disease susceptibility gene Os-11N3. Plant Cell 22:3864–3876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hutin M, Perez-Quintero AL, Lopez C, Szurek B (2015) MorTAL kombat: the story of defense against TAL effectors through loss-of-susceptibility. Front Plant Sci 6:535

    PubMed  PubMed Central  Google Scholar 

  31. Streubel J, Pesce C, Hutin M, Koebnik R, Boch J, Szurek B (2013) Five phylogenetically close rice SWEET genes confer TAL effector-mediated susceptibility to Xanthomonas oryzae pv. oryzae. New Phytol 200:808–819

    Article  CAS  PubMed  Google Scholar 

  32. Yang B, Sugio A, White FF (2006) Os8N3 is a host disease-susceptibility gene for bacterial blight of rice. Proc Natl Acad Sci 103:10503–10508

    Article  CAS  PubMed  Google Scholar 

  33. Keating BA, Herrero M, Carberry PS, Gardner J, Cole MB (2014) Food wedges: framing the global food demand and supply challenge towards 2050. Glob Food Sec 3:125–132

    Article  Google Scholar 

  34. Akter N, Rafiqul IM (2017) Heat stress effects and management in wheat: a review. Agron Sustain Dev 37:37

    Article  CAS  Google Scholar 

  35. Gupta PK, Balyan HS, Gahlaut V (2017) QTL analysis for drought tolerance in wheat: present status and future possibilities. Agronomy 7:5

    Article  CAS  Google Scholar 

  36. Mwadzingeni L, Shimelis H, Dube E, Laing MD, Tsilo TJ (2016) Breeding wheat for drought tolerance: progress and technologies. J Integr Agric 15:935–943

    Article  Google Scholar 

  37. Finn RD, Coggill P, Eberhardt RY et al (2016) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 44:279–285

    Article  CAS  Google Scholar 

  38. Marchler-Bauer A, Bo Y, Han L et al (2017) CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res 45:200–203

    Article  CAS  Google Scholar 

  39. Ning P, Liu C, Kang J, Lv J (2017) Genome-wide analysis of WRKY transcription factors in wheat (Triticum aestivum L.) and differential expression under water deficit condition. Peer J 5:3232

    Article  CAS  Google Scholar 

  40. Hu B, Jin J, Guo AY, Zhang H, Luo J, Gao G (2015) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31:1296–1297

    Article  PubMed  Google Scholar 

  41. Rombauts S, Dehais P, Van Montagu M, Rouze P (1999) PlantCARE, a plant cis-acting regulatory element database. Nucleic Acids Res 27:295–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Batra R, Saripalli G, Mohan A, Gupta S, Gill KS, Varadwaj PK, Balyan HS, Gupta PK (2017) Comparative analysis of AGPase genes and encoded proteins in eight monocots and three dicots with emphasis on wheat. Front Plant Sci 8:19

    Article  PubMed  PubMed Central  Google Scholar 

  43. Dai X, Zhao PX (2011) psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res 39:155–159 (Web Server Issue)

    Article  CAS  Google Scholar 

  44. Cheong W, Tan Y, Yap S, Ng KP (2015) Genome analysis ClicO FS: an interactive web-based service of Circos. Bioinformatics 31:3685–3687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy Server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, New York, pp 571–607

    Chapter  Google Scholar 

  46. Krogh A, Larsson B, Von HG, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580

    Article  CAS  PubMed  Google Scholar 

  47. Robert X, Gouet P (2014) Deciphering key features in protein structures with the new ENDscript server. Nucl Acids Res 42:320–324

    Article  CAS  Google Scholar 

  48. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME suite: tools for motif discovery and searching. Nucleic Acids Res 37:202–208

    Article  CAS  Google Scholar 

  49. Tao Y, Cheung LS, Li S, Eom JS (2015) Structure of a eukaryotic SWEET transporter in a homo-trimeric complex. Nature 527:259–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Simonetti FL, Teppa E, Chernomoretz A, Nielsen M, Marino Buslje C (2013) MISTIC: Mutual information server to infer coevolution. Nucleic Acids Res 41:8–14

    Article  Google Scholar 

  51. Kumar A, Kumar S, Kumar U, Suravajhala P, Gajula MN (2016) Functional and structural insights into novel DREB1A transcription factors in common wheat (Triticum aestivum L.): a molecular modeling approach. Comput Biol Chem 64:217–226

    Article  CAS  PubMed  Google Scholar 

  52. Waterhouse A, Bertoni M, Bienert S et al (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46:296–303

    Article  CAS  Google Scholar 

  53. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera--A visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  Google Scholar 

  54. Kim S, Thiessen PA, Bolton EE et al (2016) PubChem substance and compound databases. Nucleic Acid Res 44:1202–1213

    Article  CAS  Google Scholar 

  55. Kumar A, Kumar S, Kumar A, Sharma N (2017) Homology modeling, molecular docking and molecular dynamics based functional insights into rice urease bound to urea. Proc Natl Acad Sci 88:1539–1548

    Google Scholar 

  56. Schneidman-duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 33:363–367

    Article  CAS  Google Scholar 

  57. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1-2:19-25

    Article  Google Scholar 

  58. Jorgensen WL, Maxwell DS, Tirado-rives J, Haven N (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236

    Article  CAS  Google Scholar 

  59. Kaminski GA, Friesner RA (2001) Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. Phys Chem B 105:6474–6487

    Article  CAS  Google Scholar 

  60. Gahlaut V, Mathur S, Dhariwal R, Khurana JP, Tyagi AK, Balyan HS, Gupta PK (2014) A multi-step phosphorelay two-component system impacts on tolerance against dehydration stress in common wheat. Funct Integr Genomics 14:707–716

    Article  CAS  PubMed  Google Scholar 

  61. Sharma C, Saripalli G, Kumar S et al (2018) A study of transcriptome in leaf rust infected bread wheat involving seedling resistance gene Lr28. Funct Plant Biol 45:1046–1064

    Article  CAS  Google Scholar 

  62. Conant CG, Wolfe HK (2008) Turning a hobby into a job: how duplicated genes find new functions. Nat Rev Genet 9:938–950

    Article  CAS  PubMed  Google Scholar 

  63. Glover NM, Daron J, Pingault L, Vandepoele K, Paux E, Feuillet C, Choulet F (2015) Small-scale gene duplications played a major role in the recent evolution of wheat chromosome 3B. Genome Biol 16:1–13

    Article  CAS  Google Scholar 

  64. Ma J, Yang Y, Luo W et al (2017) Genome-wide identification and analysis of the MADS-box gene family in bread wheat (Triticum aestivum L.). Plos One 12:181443

    Google Scholar 

  65. Magadum S, Banerjee U, Murugan P, Gangapur D, Ravikesavan R (2013) Gene duplication as a major force in evolution. J Genet 92:155–161

    Article  PubMed  Google Scholar 

  66. Roulin A, Auer PL, Libault M, Schlueter J, Farmer A, May G, Stacey G, Doerge RW, Jackson SA (2013) The fate of duplicated genes in a polyploid plant genome. Plant J 73:143–153

    Article  CAS  PubMed  Google Scholar 

  67. Cannon SB, Mitra A, Baumgarten A, Young ND, May G (2004) The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol 4:1–21

    Article  Google Scholar 

  68. Liu J, Li Y, Wang W, Gai J, Li Y (2016) Genome-wide analysis of MATE transporters and expression patterns of a subgroup of MATE genes in response to aluminum toxicity in soybean. BMC Genom 17:223

    Article  CAS  Google Scholar 

  69. Kumar S, Mohan A, Balyan HS, Gupta PK (2009) Orthology between genomes of Brachypodium, wheat and rice. BMC Res Notes 2:93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Pfeifer M, Kugler KG, Sandve SR et al (2014) Genome interplay in the grain transcriptome of hexaploid bread wheat. Science 345:1250091–1250091

    Article  CAS  PubMed  Google Scholar 

  71. Ikai A (1980) Thermostability and aliphatic index of globular proteins. J Biochem 88:1895–1898

    CAS  Google Scholar 

  72. Chandran D (2015) Co-option of developmentally regulated plant SWEET transporters for pathogen nutrition and abiotic stress tolerance. IUBMB Life 67:461–471

    Article  CAS  PubMed  Google Scholar 

  73. Eom JS, Chen LQ, Sosso D, Julius BT (2015) SWEETs, transporters for intracellular and intercellular sugar translocation. Curr Opin Plant Biol 25:53–62

    Article  CAS  PubMed  Google Scholar 

  74. Chardon F, Bedu M, Calenge F et al (2013) Leaf fructose content is controlled by the vacuolar transporter SWEET17 in Arabidopsis. Curr Biol 23:697–702

    Article  CAS  PubMed  Google Scholar 

  75. Lee Y, Nishizawa T, Yamashita K, Ishitani R, Nureki O (2015) Structural basis for the facilitative diffusion mechanism by SemiSWEET transporter. Nat Commun 6:6112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Xuan YH, Hu YB, Chen LQ, Sosso D, Ducat DC, Hou BH, Frommer WB (2013) Functional role of oligomerization for bacterial and plant SWEET sugar transporter family. Proc Natl Acad Sci 110:3685–3694

    Article  Google Scholar 

  77. Gray WM (2004) Hormonal regulation of plant growth and development. Plos Biol 2:311

    Article  CAS  Google Scholar 

  78. Jameson PE, Dhandapani P, Novak O, Song J (2016) Cytokinins and expression of SWEET, SUT, CWINV and AAP genes increase as pea seeds germinate. Int J Mol Sci 17:12

    Article  CAS  Google Scholar 

  79. Engel ML, Holmes-Davis R, McCormick S (2005) Green sperm. Identification of male gamete promoters in Arabidopsis. Plant Physiol 138:2124–2133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Baker RF, Leach KA, Braun DM (2012) SWEET as sugar: new sucrose effluxers in plants. Mol Plant 5:766–768

    Article  PubMed  Google Scholar 

  81. Li T, Liu B, Spalding MH, Weeks DP, Yang B (2012) High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 30:390–392

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work was carried out, when TG and GS held JRF/SRF positions under a research project funded under NASF-ICAR program of Government of India. PKG was awarded Hony Scientist position and HSB was awarded Senior Scientist position both from Indian National Science Academy (INSA). For qRT-PCR, RNA for a pair of NILs was available from another collaborative project funded by NASF-ICAR. Bioinformatics Infrastructure Facility (BIF) laboratory was used for carrying out a part of the bioinformatics work. Head, Department of Genetics and Plant Breeding, CCS University, Meerut, provided the necessary infrastructure.

Author information

Authors and Affiliations

Authors

Contributions

PKG, HSB and PKS conceived the experiment and also edited and finalized the manuscript. TG conducted most of the experiments including qRT-PCR with the help of GS. AK conducted molecular dynamics analysis and VG helped in chromosome mapping.

Corresponding author

Correspondence to P. K. Gupta.

Ethics declarations

Conflict of interest

All the authors declare that there is no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1437 KB)

Supplementary material 2 (DOCX 116 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gautam, T., Saripalli, G., Gahlaut, V. et al. Further studies on sugar transporter (SWEET) genes in wheat (Triticum aestivum L.). Mol Biol Rep 46, 2327–2353 (2019). https://doi.org/10.1007/s11033-019-04691-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-019-04691-0

Keywords

Navigation