Skip to main content
Log in

Genetic relationships among subspecies of Capparis spinosa L. from Tunisia by using ISSR markers

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

In Tunisia, Capparis spinosa L. is widely distributed in different geographic areas. Although it has been extensively studied morphologically, the phylogenetic relationships by using molecular markers among Capparis taxa are still unclear. The Inter-Simple Sequence Repeats (ISSR) molecular markers were used to assess the genetic relationship of this species cultivated in the North and the South of Tunisia. Fifteen ISSR primers were analyzed to characterize the genetic profiles of 67 different genotypes. The ISSR markers produced 108 bands ranging from 4 (ISSR8) to 11 (IAM12 and ISSR16) with an average of 7.2. The observed heterozygosity ranged from 0.43 to 0.95 for ISSR7 and IAM12, respectively. The Polymorphic Information Content (PIC) ranged from 0.48 at the UBC808 to 0.85 at IAM12 and eight loci could be classified as useful for genetic mapping (PIC > 0.7). The genetic diversity within a population was high and varied according to the subspecies and bioclimatic zones. Both UPGMA (Unweighted Pair Group Method with Arithmetic mean) and PCoA (Principal Coordinate Analysis) analyses showed that populations from each subspecies grouped together. However, the structure analysis generated more groups than the PCoA plot and UPGMA, which revealed the mixed allelic of the species Capparis spinosa in Tunisia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dogan H, Ercisli S, Temim E, Hadziabulic A, Tosun M, Yilmaz SO, Zia-Ul-Haq M (2014) Diversity of chemical content and biological activity in flower buds of a wide number of wild grown caper (Capparis ovate Desf.) genotypes from Turkey. Comptes Rendus De L Acad Bulgare Des Sci 67:1593–1600

    CAS  Google Scholar 

  2. Barbera G (1991) Programme de recherche agrimed: le câprier (Capparis spp) CEE Rapport EUR13617 FR

  3. Fici S (2001) Intraspecific variation and evolutionary trends in Capparis spinosa L. (Capparaceae). Plant Syst Evol 228:123–141

    Article  Google Scholar 

  4. Raja P, Moorthy ND, Kala A, Soosai RS (2013) Extended distribution of Capparis shevaroyensis sund-ragh (Capparaceae) an endemic and vulnerable shrub in peninsular India to southern eastern ghats of tamilnaidu. Indian J Fundam Appl Life Sci 3:137–140

    Google Scholar 

  5. Le Floc ‘h E (1983) Contribution à une étude ethnobotanique de la flore tunisienne. - PubI. Sci. Tunisiennes. Programme «Flore et végétation tunisiennes». Imprimerie Officielle de la République Tunisienne, Tunisia, p 402

    Google Scholar 

  6. Bailey LH (1950) The Standard Cyclopedia of Horticulture. 658 p. Macmillan Company, New York

    Google Scholar 

  7. Tlili N, Nasri N, Saadaoui E, Khaldi A, Triki S (2009) Carotenoid and tocopherol Composition of Leaves, Buds and Flowres of Capparis spinosa Grownl. Wild in Tunisia. J Agric Food Chem 57:5381–5385

    Article  CAS  PubMed  Google Scholar 

  8. Ali-Shtayeh MS, Abu Ghdeib SI (1999) Antifungal activity of plant extracts against dermatophytes. Mycoses 42:665–672

    Article  CAS  PubMed  Google Scholar 

  9. Eddouks M, Lemhadri A, Michel JB (2005) Hypolipidemic activity of aqueous extract of Capparis spinosa L. in normal and diabetic rats. J Ethnopharmacol 98:345–350

    Article  CAS  PubMed  Google Scholar 

  10. Ghorbel A, Ben-Salem FA, Khouildi S, Skouri H, Chibani F (2001) Le câprier; caractérisation et multiplication. Des modèles biologiques à l’amélioration des plantes 157–172

  11. Saadaoui E, Khaldi A, Khouja ML, El-Gazzah M (2007) Etude- de la variabilité morphologique du câprier (Capparis spp.) en Tunisie. Revue des Régions Arides 2:73–527

    Google Scholar 

  12. Pottier-Alapetite G (1979) Flore de la Tunisie: Angiiospermes - Dicotyledones Apétales Dialypétales, Première partie. Imprimerie officielle de la république, Tunisienne, p 651

    Google Scholar 

  13. Higton RN, Akeroyd JR (1991) Variation in Capparis spinosa L. in Europe. Flora Eur 106(2):104–112

    Google Scholar 

  14. Le Floc’h E, Boulos L, Vela E (eds) (2010) Catalogue synonymique commenté de la flore de Tunisie. p 500

  15. Saadaoui E, Guetat A, Tlili N, El Gazzah M, Khaldi A (2011) Subspecific variability of Tunisian wild populations of Capparis spinosa L. J Med Plants Res 5:4339–4348

    Google Scholar 

  16. Rhizoploulou S, Psaras GK (2003) Development and structure of drought-tolerant leaves of the Mediterranean shrub Capparis spinosa L. Ann Bot 92:377–383

    Article  Google Scholar 

  17. Rhimi A, Hannachi H, Hjaoujia S, Boussaid M (2012) The use of morphological descriptors to study variability in wild populations of Capparis spinosa L. (Capparaceae) in Tunisia. Afr J Ecol 51:47–54

    Google Scholar 

  18. Yousfi AH, Bahri AB, Medini M, Rouz S, Rejeb MN, Grabi GZ (2016) Genetic diversity and population structure of six species of Capparis in Tunisia using AFLP markers. CR Biol 339:442–453

    Article  Google Scholar 

  19. Nosrati H, Hosseinpour Feizi MA, Mazinani M, Haghighi AR (2012) Effect of population size on genetic variation levels in Capparis spinosa (Capparaceae) detected by RAPDs. Eur Asian J BioSci 6:70–75

    Article  Google Scholar 

  20. Bhoyar MS, Mishra GP, Naik PK, Murkute AA, Srivastava RB (2012) Genetic variability studies among natural populations of Capparis spinosa from cold arid desert of Trans-Himalayas using DNA markers. Natl Acad Sci Lett 35:505–515

    Article  CAS  Google Scholar 

  21. Al-Safadi B, Faouri H, Elias R (2014) Genetic diversity of some Capparis L. species growing in Syria. Br Arch Biol Technol 57:916–926

    Article  Google Scholar 

  22. Ozbek O, Kara A (2013) Genetic variation in natural populations of Capparis from Turkey, as revealed by RAPD analysis. Plant Syst Evol 299:1911–1933

    Article  Google Scholar 

  23. Moubasher H, Abd El-Ghani MM, Kamel W, Mansi M, El-Bous M (2011) Taxonomic considerations among and within some Egyptian taxa of Capparis and related genera (Capparaceae) as revealed by RAPD fingerprinting. Collectanea Botanica 3:29–35. https://doi.org/10.3989/collectbot.2011.v30.003

    Article  Google Scholar 

  24. Gristina AS, Fici S, Siragusa M, Fontana I, Garfi G, Carimi F (2014) Hybridization in Capparis spinosa L.: molecular and morphological evidence from a Mediterranean island complex. Flora 209(12):733–741. https://doi.org/10.1016/j.flora.2014.09.002

    Article  Google Scholar 

  25. Saifi N, Ibijbijen J, Echchgadda D (2011) Genetic diversity of caper plant (Capparis ssp.) from North Morocco. J Food Agric Environ 9:299–304

    CAS  Google Scholar 

  26. González A, Coulson M, Brettell R (2002) Development of DNA markers (ISSRs) in mango. Acta Hortic 575:139–143

    Article  Google Scholar 

  27. Borba RS, Garcia MAS, Kovalleski A, Oliveira AC (2005) Dissimilaridade genética de linhagens de Trichogramma Westwood (Hymenoptera: Trichogrammatidae) através de marcadores moleculares ISSR. Neotrop Entomol 34:565–569

    Article  Google Scholar 

  28. Rocha TO, Freitas JS, Santos ESL, Scaldaferri MM (2016) Estimate of genetic diversity in cassutinga (Croton heliotropiifolius) based on molecular markers. Afr J Biotechnol 15:518–523

    Article  CAS  Google Scholar 

  29. Trieu LN, Mien NT, Tien TV, Ket NV (2016) Genetic diversity of Panax stipuleanatus Tsai in North Vietnam detected by inter simple sequence repeat (ISSR) markers. Biotechnol Biotechnol Equip 30:506–511

    Article  CAS  Google Scholar 

  30. Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNAsepacer-lengtb polymorphism in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci 81:8014–8019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Peakall R, Smouse PE (2012) GENALEX6.5: genetic analysis in. Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Brookfield JFU (1996) A simple new method for estimating null allele frequency from heterozygote deficiency. Mol Ecol 5:233–257

    Article  Google Scholar 

  33. Tessier C, David J, This P, Boursiquot JM, Charrier A (1999) Optimization of the choice of molecular markers for varietal identification in Vitis vinifera L. Theor Appl Genet 98:171 – 177

    Article  CAS  Google Scholar 

  34. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Huff DR, Peakall R, Smouse PE (1993) RAPD variation within and among natural populations of outcrossing buffalograss [Buchloe dactyloides (Nutt.) Engelm.]. Theor Appl Genet 86:927–934

    Article  CAS  PubMed  Google Scholar 

  36. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  38. Halasz J, Pedryc A, Ercisli S, Yilmaz KU, Hegedus A (2010) S-genotyping supports the genetic relationships between Turkish and Hungarian apricot germplasm. J Am Soc Hortic Sci 135(5):410–417

    Article  Google Scholar 

  39. Ercisli S, Ipek A, Barut E (2011) SSR marker-based DNA fingerprinting and cultivar identification of olives (Olea europaea). Biochem Genet 49:555–561

    Article  CAS  PubMed  Google Scholar 

  40. Caliskan O, Bayazit S, Oktem M, Ergul A (2017) Evaluation of the genetic diversity of pomegranate accessions from Turkey using new microsatellite markers. Turkish J Agric For 41:142–153

    Article  CAS  Google Scholar 

  41. Hamrick JL, Godt MJW (1996) Conservation genetics of endemic plant species. In: Avise JL (ed) Conservation genetics case histories from nature. Chapman and Hall, London, pp 281–304

    Chapter  Google Scholar 

  42. National Institute of Research in Rural Engineering, Waters, and Forests (INRGREF) (2001) Development of the culture of the caper in the West North of Tunisia. Final Scientific Report, Tunisia, p 84

  43. Rivera D, Inocencio C, Obón C, Alcaraz F (2003) Review of food and medicinal uses of Capparis L. subgenus Capparis (Capparidaceae). Econ Bot 57:515–534

    Article  Google Scholar 

  44. Skouri H (2000) Enzymatic polymorphism study at the caper (Capparis spinosa L.). Faculty of the Sciences, University of Tunis II, Tunis, p 96

  45. Santos RC, Queiroz CM, Batista VGL, Silva CRC (2013) Variabilidade de progênies F2 de amendoim geradas por meio de seleção de genitores ISSR-divergentes. Rev Cienc Agron 44:578–586

    Article  Google Scholar 

  46. Soares ANR, Vitória MF, Nascimento ALS, Ledo AS (2016) Genetic diversity in natural populations of mangaba in Sergipe, the largest producer State in Brazil. Genet Mol Res 15:1–12

    Article  Google Scholar 

  47. Khouildi S, Pagnotta MA, Tanzarella OA, Ghorbel A, Porceddu E (2000) Suitability of RAPD (random amplified polymorphic DNA) technique for estimating the genetic variation in natural genotypes of Tunisian and Italian caper (Capparis spinosa L.). Agricoltura-Mediterranea 130:72–77

    Google Scholar 

  48. Saadaoui E, Khaldi A, Khouja ML, El Gazzah M (2009) Intraspecific variation of Capparis spinosa L. in Tunisia. J Herbs Spices Med Plants 15:9–15

    Article  Google Scholar 

  49. Inocencio C, Cowan RS, Alcaraz F, Rivera D, Fay MF (2005) AFLP fingerprinting in Capparis subgenus Capparis related to the commercial sources of capers. Genet Resour Crop Evolut 52:137–144

    Article  CAS  Google Scholar 

  50. Mhamdi TM, Ben Haj Ali I, Messaoud C, Boussaid M (2012) Genetic variability of Tunisian wild strawberry tree (Arbutus unedo L.) populations interfered from isozyme markers. Sci Hortic 146:92–98

    Article  CAS  Google Scholar 

  51. Benzarti Z (2003) La pluviométrie en Tunisie. Analyse des années très pluvieuses. In: ENS (ed). EAU ET ENVIRONNEMENT - Tunisie et milieux méditerranéens. Lyon, pp. 63–77

  52. https://www.google.tn/cartebioclimatiquetunisie)

Download references

Acknowledgements

The authors thank the National Genes Bank of Tunisia Institute and Mss Siwar Nsiri for her comments on an early version of manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rayda Ben Ayed.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies conducted on human or animal subjects.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rhimi, A., Mnasri, S., Ben Ayed, R. et al. Genetic relationships among subspecies of Capparis spinosa L. from Tunisia by using ISSR markers. Mol Biol Rep 46, 2209–2219 (2019). https://doi.org/10.1007/s11033-019-04676-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-019-04676-z

Keywords

Navigation