Skip to main content
Log in

Neuregulin-1β modulates myogenesis in septic mouse serum-treated C2C12 myotubes in vitro through PPARγ/NF-κB signaling

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Sepsis-induced skeletal muscle atrophy is a pathological condition characterized by the loss of strength and muscle mass. Cytokine-induced apoptosis and impaired myogenesis play key roles in the development of this condition. However, the complete underlying mechanism remains largely unknown. Neuregulins are glial growth factors essential for myogenesis that regulate muscle metabolism. We investigated the role of neuregulin-1β (NRG-1β) in sepsis-induced apoptosis and myogenesis in skeletal muscle using a serum-based in vitro sepsis model. C2C12 myoblasts were differentiated by treatment with proliferative medium for 7 days. Then, cells were treated with 2% sham mouse serum, 1 nM NRG-1β in 2% sham mouse serum, 2% septic mouse serum (SMS), or 1 nM NRG-1β in 2% SMS. Exposure to SMS induced apoptosis, impaired myogenesis, and downregulated PPARγ. NRG-1β co-incubation remedied all these effects and inhibited NF-κB transcriptional activity. A specific PPARγ antagonist (GW9662) was also administered as a 2-h pretreatment to block PPARγ-mediated signaling and appeared to attenuate the effects of NRG-1β. Taken together, our results demonstrate that NRG-1β functions via a PPARγ/NF-κB-dependent pathway to modulate myogenesis and protect against apoptosis in SMS-treated C2C12 myotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nardelli P, Vincent JA, Powers R (2016) Reduced motor neuron excitability is an important contributor to weakness in a rat model of sepsis. Exp Neurol 282:1–8. https://doi.org/10.1016/j.expneurol.2016.04.020

    Article  PubMed  PubMed Central  Google Scholar 

  2. Nardi O, Zavala E, Martin C, Nanas S, Scheeren T, Polito A, Borrat X, Annane D (2018) Targeting skeletal muscle tissue oxygenation (StO2) in adults with severe sepsis and septic shock: a randomised controlled trial (OTO-StS Study). BMJ Open 19 8(3):e017581. https://doi.org/10.1136/bmjopen-2017-017581

    Article  PubMed  PubMed Central  Google Scholar 

  3. Liu L, Xie F, Wei K, Hao XC, Li P, Cao J, Min S (2016) Sepsis induced denervation-like changes at the neuromuscular junction. J Surg Res 200(2):523–532. https://doi.org/10.1016/j.jss.2015.09.012

    Article  CAS  PubMed  Google Scholar 

  4. Rossaint J, Zarbock A (2015) Pathogenesis of multiple organ failure in sepsis. Crit Rev Immunol 35(4):277–291

    Article  PubMed  Google Scholar 

  5. Latronico N, Fenzi F, Recupero D et al (1996) Critical illness myopathy and neuropathy. Lancet 347:1579–1582

    Article  CAS  PubMed  Google Scholar 

  6. Hund E (2001) Neurological complications of sepsis: critical illness polyneuropathy and myopathy. J Neurol 248:929–934

    Article  CAS  PubMed  Google Scholar 

  7. Garnacho-Montero J, Amaya-Villar R, García-Garmendía JL, Madrazo-Osuna J, Ortiz-Leyba C (2005) Effect of critical illness polyneuropathy on the withdrawal from mechanical ventilation and the length of stay in septic patients. Crit Care Med 33:349–354

    Article  PubMed  Google Scholar 

  8. Garnacho-Montero J, Madrazo-Osuna J, García-Garmendia JL et al (2001) Critical illness polyneuropathy: risk factors and clinical consequences. A cohort study in septic patients. Intensive Care Med 27:1288–1296

    Article  CAS  PubMed  Google Scholar 

  9. Zhang L, Du J, Hu Z, Han G, Delafontaine P, Garcia G, Mitch WE (2009) IL-6 and serum amyloid A synergy mediates angiotensin II-induced muscle wasting. J Am Soc Nephrol 20:604–612. https://doi.org/10.1681/ASN.2008060628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Williams A, Wang JJ, Wang L, Sun X, Fischer JE, Hasselgren PO (1998) Sepsis in mice stimulates muscle proteolysis in the absence of IL-6. Am J Physiol 275:R1983–R1991

    CAS  PubMed  Google Scholar 

  11. Reid MB, Li YP (2001) Tumor necrosis factor-alpha and muscle wasting: a cellular perspective. Respir Res 2:269–272. doi: 10.1186%2Frr67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Haddad F, Zaldivar F, Cooper DM, Adams GR (2005) IL-6-induced skeletal muscle atrophy. J Appl Physiol 98:911–917. https://doi.org/10.1152/japplphysiol.01026.2004

    Article  CAS  PubMed  Google Scholar 

  13. Zhao Q, Yang ST, Wang JJ et al (2015) TNF alpha inhibits myogenic differentiation of C2C12 cells through NF-κB activation and impairment of IGF-1 signaling pathway. Biochem Biophys Res Commun 458:790–795. https://doi.org/10.1016/j.bbrc.2015.02.026

    Article  CAS  PubMed  Google Scholar 

  14. Magee P, Pearson S, Whittingham-Dowd J, Allen J (2012) PPARγ as a molecular target of EPA anti-inflammatory activity during TNF-α-impaired skeletal muscle cell differentiation. J Nutr Biochem 23:1440–1448. https://doi.org/10.1016/j.jnutbio.2011.09.005

    Article  CAS  PubMed  Google Scholar 

  15. Kim D, Chi S, Lee KH et al (1999) Neuregulin stimulates myogenic differentiation in an autocrine manner. J Biol Chem 274:15395–15400. https://doi.org/10.1074/jbc.274.22.15395

    Article  CAS  PubMed  Google Scholar 

  16. Simmons LJ, Surles-Zeigler MC, Li Y, Ford GD, Newman GD, Ford BD (2016) Regulation of inflammatory responses by neuregulin-1 in brain ischemia and microglial cells in vitro involves the NF-kappa B pathway. J Neuroinf 13: 237.

    Article  Google Scholar 

  17. Rittirsch D, Huber-Lang MS, Flierl MA, Ward PA (2009) Immunodesign of experimental sepsis by cecal ligation and puncture. Nat Protoc 4:31–36. https://doi.org/10.1038/nprot.2008.214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kislinger T, Gramolini AO, Pan Y, Rahman K, MacLennan DH, Emili A (2005) Proteome dynamics during C2C12 myoblast differentiation. Mol Cell Proteom 4:887–901. https://doi.org/10.1074/mcp.M400182-MCP200

    Article  CAS  Google Scholar 

  19. Li Y, Tennekoon GI, Birnbaum M, Marchionni MA, Rutkowski JL (2001) Neuregulin signaling through a PI3K/Akt/Bad pathway in Schwann cell survival. Mol Cell Neurosci 17:761–767. https://doi.org/10.1006/mcne.2000.0967

    Article  CAS  PubMed  Google Scholar 

  20. Langen RC, Schols AM, Kelders MC, Wouters EF, Janssen-Heininger YM (2001) Inflammatory cytokines inhibit myogenic differentation through activation of nuclear factor-kappaB. FASEB J 15:1169–1180

    Article  CAS  PubMed  Google Scholar 

  21. Li YP, Reid MB (2000) NF-kappaB mediates the protein loss induced by TNF-alpha in differentiated skeletal muscle myotubes. Am J Physiol Regul Integr Comp Physiol 279:R1165–R1170. https://doi.org/10.1152/ajpregu.2000.279.4.R1165

    Article  CAS  PubMed  Google Scholar 

  22. Janssen SP, Gayan-Ramirez G, Van den Bergh A, Herijgers P, Maes K, Verbeken E, Decramer M (2005) Interleukin-6 causes myocardial failure and skeletal muscle atrophy in rats. Circulation 111:996–1005. https://doi.org/10.1161/01.CIR.0000156469.96135.0D

    Article  CAS  PubMed  Google Scholar 

  23. Bonetto A, Aydogdu T, Kunzevitzky N, Guttridge DC, Khuri S, Koniaris LG, Zimmers TA (2011) STAT3 activation in skeletal muscle links muscle wasting and the acute phase response in cancer cachexia. PLoS One 6:e22538. https://doi.org/10.1371/journal.pone.0022538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Adams V, Mangner N, Gasch A et al (2008) Induction of MuRF1 is essential for TNF-alpha-induced loss of muscle function in mice. J Mol Biol 384:48–59. https://doi.org/10.1016/j.jmb.2008.08.087

    Article  CAS  PubMed  Google Scholar 

  25. Goodman MN (1994) Interleukin-6 induces skeletal muscle protein breakdown in rats. Proc Soc Exp Biol Med 205:182–185

    Article  CAS  PubMed  Google Scholar 

  26. Fukazawa R, Miller TA, Kuramochi Y et al (2003) Neuregulin-1 protects ventricular myocytes from anthracycline-induced apoptosis via erbB4-dependent activation of PI3-kinase/Akt. J Mol Cell Cardiol 35:1473–1479

    Article  CAS  PubMed  Google Scholar 

  27. Flores AI, Mallon BS, Matsui T, Ogawa W, Rosenzweig A, Okamoto T, Macklin WB (2000) Akt-mediated survival of oligodendrocytes induced by neuregulins. J Neurosci 20:7622–7630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lai KO, Ip FC, Cheung J et al (2001) Expression of Eph receptors in skeletal muscle and their localization at the neuromuscular junction. Mol Cell Neurosci 17:1034 – 1047. https://doi.org/10.1006/mcne.2001.0997

    Article  CAS  PubMed  Google Scholar 

  29. Lebrasseur NK, Cote GM, Miller TA et al (2003) Regulation of neuregulin/ErbB signaling by contractile activity in skeletal muscle. Am J Physiol Cell Physiol 284:C1149 –1155. https://doi.org/10.1152/ajpcell.00487.2002

    Article  CAS  PubMed  Google Scholar 

  30. Suarez E, Bach D, Cadefau J et al (2001) novel role of neuregulin in skeletal muscle Neuregulin stimulates glucose uptake, glucose transporter translocation, and transporter expression in muscle cells. J Biol Chem 276:18257–18264. https://doi.org/10.1074/jbc.M008100200

    Article  CAS  PubMed  Google Scholar 

  31. Jo SA, Zhu X, Marchionni MA et al (1995) Neuregulins are concentrated at nerve-muscle synapses and activate ACh-receptor gene expression. Nature 373:158 – 161. https://doi.org/10.1038/373158a0

    Article  CAS  PubMed  Google Scholar 

  32. Jiang C, Ting AT, Seed B (1998) PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature 391:82–86. https://doi.org/10.1038/34184

    Article  CAS  PubMed  Google Scholar 

  33. Marx N, Mach F, Sauty A et al (2000) Peroxisome proliferator-activated receptor-gamma activators inhibit IFN-gamma-induced expression of the T cell-active CXC chemokines IP-10, Mig, and I-TAC in human endothelial cells. J Immunol 164:6503–6508

    Article  CAS  PubMed  Google Scholar 

  34. Wang N, Verna L, Chen NG, Chen J, Li H, Forman BM, Stemerman MB (2002) Constitutive activation of peroxisome proliferator-activated receptor-gamma suppresses pro-inflammatory adhesion molecules in human vascular endothelial cells. J Biol Chem 277:34176–34181. https://doi.org/10.1074/jbc.M203436200

    Article  CAS  PubMed  Google Scholar 

  35. Lee KS, Kim SR, Park SJ et al (2006) Peroxisome proliferator activated receptor-gamma modulates reactive oxygen species generation and activation of nuclear factor-kappaB and hypoxia-inducible factor 1alpha in allergic airway disease of mice. J Allergy Clin Immunol 118:120–127. https://doi.org/10.1016/j.jaci.2006.03.021

    Article  CAS  PubMed  Google Scholar 

  36. Remels AH, Langen RC, Gosker HR et al (2009) PPARgamma inhibits NF-kappaB-dependent transcriptional activation in skeletal muscle. Am J Physiol Endocrinol Metab 297:E174–E183. https://doi.org/10.1152/ajpendo.90632.2008

    Article  CAS  PubMed  Google Scholar 

  37. Cantó C, Pich S, Paz JC et al (2007) Neuregulins increase mitochondrial oxidative capacity and insulin sensitivity in skeletal muscle cells. Diabetes 56:2185–2193. https://doi.org/10.2337/db06-1726

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [Grant Number 81401632]. The funding source has no role in study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the article for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jicheng Wei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving Human Participants and/or Animals

All experimental procedures involving animals were approved by the Animal Ethics and Use Committee of Southwest Medical University. Male and female C57BL/6 mice were obtained from the Experimental Animal Centre of Southwest Medical University (Luzhou, China) and received humane care according to the Care and Use Committee of Southwest Medical University.

Informed consent

Not applicable.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 399 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Liu, X., Bai, Y. et al. Neuregulin-1β modulates myogenesis in septic mouse serum-treated C2C12 myotubes in vitro through PPARγ/NF-κB signaling. Mol Biol Rep 45, 1611–1619 (2018). https://doi.org/10.1007/s11033-018-4293-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-018-4293-6

Keywords

Navigation