Skip to main content
Log in

The association between C-159T polymorphism in CD14 gene and susceptibility to tuberculosis: a meta-analysis

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The association between CD14 gene C-159T polymorphism and tuberculosis (TB) susceptibility remains inconclusive. To derive a more precise estimation of the correlation, we performed a meta-analysis summarize the possible at a systematic manner. PubMed, HighWire and ScienceDirect databases covering all papers (up to November 2012) were searched. Statistical analyses were conducted by Rev-Man and STATA. Random- and fixed-effect models were used to estimate pooled odds ratios (ORs) and 95 % confidence intervals (CIs), based on between-study heterogeneity. Eight published case–control studies investigating the relationship between C-159T polymorphism in CD14 gene and TB susceptibility were included. Results showed that individuals with T allele have an increased risk of TB compared with those with C allele (OR (95 % CI) was 1.52 (1.11, 2.08) for TT vs. TC + CC, P < 0.001; 1.27 (1.01, 1.61) for T vs. C, P = 0.04). When stratified by ethnicity, variant TT homozygote carriers had an 86 % increased risk of TB in Asians (OR (95 % CI) was 1.86 (1.57, 2.20) for TT vs. TC + CC, P < 0.001), but not in Caucasians (OR (95 % CI) was TT vs. TC + CC: OR = 0.78, 95 % CI = 0.51–1.21, P = 0.61). This meta-analysis suggests that C-159T polymorphism in CD14 gene is associated with increased risk of TB, especially in Asians, but not in Caucasians.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. The Lancet (2012) Tuberculosis control and elimination in 2012 and beyond. Lancet 2012, 379:1076

  2. Lawn SD, Zumla AI (2011) Tuberculosis. Lancet 378:57–72

    Article  PubMed  Google Scholar 

  3. WHO (2012) Global tuberculosis report 2012

  4. Druszczynska M, Kowalewicz-Kulbat M, Fol M, Wlodarczyk M, Rudnicka W (2012) Latent M. tuberculosis infection–pathogenesis, diagnosis, treatment and prevention strategies. Pol J Microbiol 61:3–10

    PubMed  CAS  Google Scholar 

  5. Ernst JD (2012) The immunological life cycle of tuberculosis. Nat Rev Immunol 12:581–591

    Article  PubMed  CAS  Google Scholar 

  6. Axelsson-Robertson R, Magalhaes I, Parida SK, Zumla A, Maeurer M (2012) The immunological footprint of Mycobacterium tuberculosis T-cell epitope recognition. J Infect Dis 205(Suppl 2):S301–S315

    Article  PubMed  CAS  Google Scholar 

  7. Azad AK, Sadee W, Schlesinger LS (2012) Innate immune gene polymorphisms in tuberculosis. Infect Immun 80:3343–3359

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Alagarasu K, Selvaraj P, Swaminathan S, Raghavan S, Narendran G (2009) Narayanan PR: CCR2, MCP-1, SDF-1a & DC-SIGN gene polymorphisms in HIV-1 infected patients with & without tuberculosis. Indian J Med Res 130:444–450

    PubMed  CAS  Google Scholar 

  9. Bahari G, Hashemi M, Taheri M, Naderi M, Eskandari-Nasab E, Atabaki M (2012) Association of IRGM polymorphisms and susceptibility to pulmonary tuberculosis in Zahedan Southeast Iran. Sci World J 2012:950801

    Google Scholar 

  10. Baker AR, Qiu F, Randhawa AK, Horne DJ, Adams MD, Shey M, Barnholtz-Sloan J, Mayanja-Kizza H, Kaplan G, Hanekom WA et al (2012) Genetic variation in TLR genes in Ugandan and South African populations and comparison with HapMap data. PLoS One 7:e47597

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Ben-Selma W, Ben-Kahla I, Boukadida J, Harizi H (2011) Contribution of the P2X7 1513A/C loss-of-function polymorphism to extrapulmonary tuberculosis susceptibility in Tunisian populations. FEMS Immunol Med Microbiol 63:65–72

    Article  PubMed  CAS  Google Scholar 

  12. Hanta I, Tastemir-Korkmaz D, Demirhan O, Hanta D, Kuleci S, Seydaoglu G (2012) Association of the Nramp1 gene polymorphisms and clinical forms in patients with tuberculosis. Bratisl Lek Listy 113:657–660

    PubMed  CAS  Google Scholar 

  13. Mishra G, Poojary SS, Raj P, Tiwari PK (2012) Genetic polymorphisms of CCL2, CCL5, CCR2 and CCR5 genes in Sahariya tribe of North Central India: an association study with pulmonary tuberculosis. Infect Genet Evol 12:1120–1127

    Article  PubMed  CAS  Google Scholar 

  14. Peng R, Yue J, Han M, Zhao Y, Liu L, Liang L (2012) The IL-17F sequence variant is associated with susceptibility to tuberculosis. Gene 515:229–232

    Article  PubMed  Google Scholar 

  15. Pydi SS, Sunder SR, Venkatasubramanian S, Kovvali S, Jonnalagada S, Valluri VL (2013) Killer cell immunoglobulin like receptor gene association with tuberculosis. Hum Immunol 74:85–92

    Article  PubMed  CAS  Google Scholar 

  16. Zhang G, Zhou B, Wang W, Zhang M, Zhao Y, Wang Z, Yang L, Zhai J, Feng CG, Wang J, Chen X (2012) A functional single-nucleotide polymorphism in the promoter of the gene encoding interleukin 6 is associated with susceptibility to tuberculosis. J Infect Dis 205:1697–1704

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Alavi-Naini R, Salimi S, Sharifi-Mood B, Davoodikia AA, Moody B, Naghavi A (2012) Association between the CD14 gene C-159T polymorphism and serum soluble CD14 with pulmonary tuberculosis. Int J Tuberc Lung Dis 16:1383–1387

    Article  PubMed  CAS  Google Scholar 

  18. Ayaslioglu E, Kalpaklioglu F, Kavut AB, Erturk A, Capan N, Birben E (2012) The role of CD14 gene promoter polymorphism in tuberculosis susceptibility. J Microbiol Immunol Infect 46:158–163

    Article  PubMed  Google Scholar 

  19. Xue Y, Zhao ZQ, Chen F, Zhang L, Li GD, Ma KW, Bai XF, Zuo YJ (2012) Polymorphisms in the promoter of the CD14 gene and their associations with susceptibility to pulmonary tuberculosis. Tissue Antigens 80:437–443

    Article  PubMed  CAS  Google Scholar 

  20. Zhao MY, Xue Y, Zhao ZQ, Li FJ, Fan DP, Wei LL, Sun XJ, Zhang X, Wang XC, Zhang YX, Li JC (2012) Association of CD14 G(-1145)A and C(-159)T polymorphisms with reduced risk for tuberculosis in a Chinese Han population. Genet Mol Res 11:3425–3431

    Article  PubMed  CAS  Google Scholar 

  21. Kang YA, Lee HW, Kim YW, Han SK, Shim YS, Yim JJ (2009) Association between the −159C/T CD14 gene polymorphism and tuberculosis in a Korean population. FEMS Immunol Med Microbiol 57:229–235

    Article  PubMed  CAS  Google Scholar 

  22. Rosas-Taraco AG, Revol A, Salinas-Carmona MC, Rendon A, Caballero-Olin G, Arce-Mendoza AY (2007) CD14 C(-159)T polymorphism is a risk factor for development of pulmonary tuberculosis. J Infect Dis 196:1698–1706

    Article  PubMed  CAS  Google Scholar 

  23. Druszczynska M, Strapagiel D, Kwiatkowska S, Kowalewicz-Kulbat M, Rozalska B, Chmiela M, Rudnicka W (2006) Tuberculosis bacilli still posing a threat. Polymorphism of genes regulating anti-mycobacterial properties of macrophages. Pol J Microbiol 55:7–12

    PubMed  CAS  Google Scholar 

  24. Pacheco E, Fonseca C, Montes C, Zabaleta J (2004) Garcia LF, Arias MA: CD14 gene promoter polymorphism in different clinical forms of tuberculosis. FEMS Immunol Med Microbiol 40:207–213

    Article  PubMed  CAS  Google Scholar 

  25. Rigoli L, Briuglia S, Caimmi S, Ferrau V, Gallizzi R, Leonardi S, La Rosa M, Salpietro C (2011) Gene-environment interaction in childhood asthma. Int J Immunopathol Pharmacol 24:41–47

    PubMed  CAS  Google Scholar 

  26. Tesse R, Pandey RC, Kabesch M (2011) Genetic variations in toll-like receptor pathway genes influence asthma and atopy. Allergy 66:307–316

    Article  PubMed  CAS  Google Scholar 

  27. Waterer GW, Bruns AH (2010) Genetic risk of acute pulmonary infections and sepsis. Expert Rev Respir Med 4:229–238

    Article  PubMed  CAS  Google Scholar 

  28. Martinez FD (2007) CD14, endotoxin, and asthma risk: actions and interactions. Proc Am Thorac Soc 4:221–225

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Baldini M, Lohman IC, Halonen M, Erickson RP, Holt PG, Martinez FD (1999) A Polymorphism* in the 5′ flanking region of the CD14 gene is associated with circulating soluble CD14 levels and with total serum immunoglobulin E. Am J Respir Cell Mol Biol 20:976–983

    Article  PubMed  CAS  Google Scholar 

  30. Davey SG, Egger M (1997) Meta-analyses of randomised controlled trials. Lancet 350:1182

    Google Scholar 

  31. Mantel N, Haenszel W (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 22:719–748

    PubMed  CAS  Google Scholar 

  32. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7:177–188

    Article  PubMed  CAS  Google Scholar 

  33. Yusuf S, Peto R, Lewis J, Collins R, Sleight P (1985) Beta blockade during and after myocardial infarction: an overview of the randomized trials. Prog Cardiovasc Dis 27:335–371

    Article  PubMed  CAS  Google Scholar 

  34. Egger M, Davey SG, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315:629–634

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Begg CB, Mazumdar M (1994) Operating characteristics of a rank correlation test for publication bias. Biometrics 50:1088–1101

    Article  PubMed  CAS  Google Scholar 

  36. Strapagiel D, Kasztalska K, Druszczynska M, Kowalewicz-Kulbat M, Vrba A, Matusiak A, Chmiela M, Rudnicka W (2008) Monocyte response receptors in BCG driven delayed type hypersensitivity to tuberculin. Folia Histochem Cytobiol 46:353–359

    Article  PubMed  CAS  Google Scholar 

  37. Tekin D, Kayaalti Z, Dalgic N, Cakir E, Soylemezoglu T, Isin KB, Aydin KB (2010) Polymorphism in the p2x7 gene increases susceptibility to extrapulmonary tuberculosis in Turkish children. Pediatr Infect Dis J 29:779–782

    Article  PubMed  Google Scholar 

  38. Jamieson SE, Miller EN, Black GF, Peacock CS, Cordell HJ, Howson JM, Shaw MA, Burgner D, Xu W, Lins-Lainson Z et al (2004) Evidence for a cluster of genes on chromosome 17q11-q21 controlling susceptibility to tuberculosis and leprosy in Brazilians. Genes Immun 5:46–57

    Article  PubMed  CAS  Google Scholar 

  39. Lawn SD, Labeta MO, Arias M, Acheampong JW, Griffin GE (2000) Elevated serum concentrations of soluble CD14 in HIV- and HIV + patients with tuberculosis in Africa: prolonged elevation during anti-tuberculosis treatment. Clin Exp Immunol 120:483–487

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Yazdani N, Amoli MM, Naraghi M, Mersaghian A, Firouzi F, Sayyahpour F, Mokhtari Z (2012) Association between the functional polymorphism C-159T in the CD14 promoter gene and nasal polyposis: potential role in asthma. J Investig Allergol Clin Immunol 22:406–411

    PubMed  CAS  Google Scholar 

  41. Loo WT, Bai LJ, Fan CB, Yue Y, Dou YD, Wang M, Liang H, Cheung MN, Chow L, Li JL et al (2012) Clinical application of human beta-defensin and CD14 gene polymorphism in evaluating the status of chronic inflammation. J Transl Med 10(Suppl 1):S9

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kurne A, Sayat G, Aydin OF, Turgutoglu N, Terzi M, Sackesen C, Karabulut E, Karabudak R (2012) Lack of association of the CD14/C – 159T polymorphism with susceptibility and progression parameters in Turkish multiple sclerosis patients. J Neuroimmunol 250:83–86

    Article  PubMed  CAS  Google Scholar 

  43. Kim EJ, Chung WC, Lee KM, Paik CN, Jung SH, Lee BI, Chae HS, Choi KY (2012) Association between toll-like receptors/CD14 gene polymorphisms and inflammatory bowel disease in Korean population. J Korean Med Sci 27:72–77

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Wu SQ, Zhang KB, Chen HQ, Zhao ZG, Wang GL, Chen C (2011) Association between gene polymorphism of CD14-159 (C/T) and allergic asthma. Mol Med Report 4:1127–1130

    Article  CAS  Google Scholar 

  45. Ertan P, Berdeli A, Yilmaz O, Gonulal DA, Yuksel H (2011) LY96, UPKIB mutations and TLR4, CD14, MBL polymorphisms in children with urinary tract infection. Indian J Pediatr 78:1229–1233

    Article  PubMed  Google Scholar 

  46. Penders J, Thijs C, Mommers M, Stobberingh EE, Dompeling E, Reijmerink NE, van den Brandt PA, Kerkhof M, Koppelman GH, Postma DS (2010) Host-microbial interactions in childhood atopy: toll-like receptor 4 (TLR4), CD14, and fecal Escherichia coli. J Allergy Clin Immunol 125:231–236

    Article  PubMed  CAS  Google Scholar 

  47. Lin J, Yao YM, Huang ZH, Yu Y, Zhu JM, Chai JK, Sheng ZY (2006) The influence of CD14 genomic polymorphism on CD14 gene expression as well as protein release and its clinical significance in patients with extensive burns. Zhonghua Wai Ke Za Zhi 44:907–910

    PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouyi Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Q., Chen, H., Zheng, X. et al. The association between C-159T polymorphism in CD14 gene and susceptibility to tuberculosis: a meta-analysis. Mol Biol Rep 41, 7623–7629 (2014). https://doi.org/10.1007/s11033-014-3652-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3652-1

Keywords

Navigation