Skip to main content

Advertisement

Log in

The association between KL polymorphism and prostate cancer risk in Korean patients

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The Klotho (KL) gene is a classical “aging suppressor” gene. Although recent studies have shown that KL participates in the progression of several types of human cancers, the relationship between KL polymorphism and prostate cancer was unknown. The present study aimed to investigate the association between KL genetic polymorphisms and prostate cancer. Twenty-five common single nucleotide polymorphisms (SNPs) in KL gene (including KL gene polymorphism C1818T in exon 4) were assessed in 272 prostate cancer cases and 173 controls. Single-locus analyses were conducted using unconditional logistic regression. In addition, we did a haplotype analysis for the 25 KL SNPs tested. CC genotype of C1548T KL polymorphism had approximately twofold increased prostate cancer risk compared with the homozygous genotype TT and heterozygote CT (odds ratio 1.85 [95 % CI, 1.09–3.12], P = 0.02). We also found that non-T allele carriers had significantly higher prostate cancer risk associated with the prostate cancer clinical characteristics (tumor stage or Gleason score). Our findings suggested that the C1548T polymorphism of KL gene is associated with the prostate cancer and may act as a risk factor for the development of prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics, 2010. CA Cancer J Clin 60:277–300

    Article  PubMed  Google Scholar 

  2. Park SK, Sakoda LC, Kang D et al (2006) Rising prostate cancer rates in South Korea. Prostate 66:1285–1291

    Article  PubMed  Google Scholar 

  3. Chan JM, Holick CN, Leitzmann MF et al (2006) Diet after diagnosis and the risk of prostate cancer progression, recurrence, and death (United States). Cancer Causes Control 17:199–208

    Article  PubMed  Google Scholar 

  4. Itoh N (2010) FGFs: their evolutionary history and roles in development, metabolism, and disease. Cell Tissue Res 342:1–11

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Kuro-o M, Matsumura Y, Aizawa H et al (1997) Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390:45–51

    Article  PubMed  CAS  Google Scholar 

  6. Kurosu H, Yamamoto M, Clark JD et al (2005) Suppression of aging in mice by the hormone Klotho. Science 309:1829–1833

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Ito S, Kinoshita S, Shiraishi N, Nakagawa S, Sekine S, Fujimori T, Nabeshima Y (2000) Molecular cloning and expression analyses of mouse [beta]klotho, which encodes a novel Klotho family protein. Mech Dev 98:115–119

    Article  PubMed  CAS  Google Scholar 

  8. Matsumura Y, Aizawa H, Shiraki-Iida T, Nagai R, Kuro-o M, Nabeshima Y (1998) Identification of the human klotho gene and its two transcripts encoding membrane and secreted klotho protein. Biochem Biophys Res Commun 242:626–630

    Article  PubMed  CAS  Google Scholar 

  9. Shiraki-Iida T, Aizawa H, Matsumura Y, Sekine S, Iida A, Anazawa H, Nagai R, Kuro-o M, Nabeshima Y (1998) Structure of the mouse klotho gene and its two transcripts encoding membrane and secreted protein. FEBS Lett 424:6–10

    Article  PubMed  CAS  Google Scholar 

  10. Imura A, Iwano A, Tohyama O, Tsuji Y, Nozaki K, Hashimoto N, Fujimori T, Nabeshima Y (2004) Secreted Klotho protein in sera and CSF: implication for post-translational cleavage in release of Klotho protein from cell membrane. FEBS Lett 565:143–147

    Article  PubMed  CAS  Google Scholar 

  11. Chen C-D, Podvin S, Gillespie E, Leeman SE, Abraham CR (2007) Insulin stimulates the cleavage and release of the extracellular domain of Klotho by ADAM10 and ADAM17. Proc Natl Acad Sci 104:19796–19801

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Ohyama Y, Kurabayashi M, Masuda H et al (1998) Molecular cloning of rat klotho cDNA: markedly decreased expression of klotho by acute inflammatory stress. Biochem Biophys Res Commun 251:920–925

    Article  PubMed  CAS  Google Scholar 

  13. Cha S-K, Ortega B, Kurosu H, Rosenblatt KP, Kuro-o M, Huang C-L (2008) Removal of sialic acid involving Klotho causes cell-surface retention of TRPV5 channel via binding to galectin-1. Proc Natl Acad Sci 105:9805–9810

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Kurosu H, Ogawa Y, Miyoshi M et al (2006) Regulation of fibroblast growth factor-23 signaling by Klotho. J Biol Chem 281:6120–6123

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, Fujita T, Fukumoto S, Yamashita T (2006) Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 444:770–774

    Article  PubMed  CAS  Google Scholar 

  16. Wolk A, Mantzoros CS, Andersson SO et al (1998) Insulin-like growth factor 1 and prostate cancer risk: a population-based, case-control study. J Natl Cancer Inst 90:911–915

    Article  PubMed  CAS  Google Scholar 

  17. Telci D, Dogan AU, Ozbek E, Polat EC, Simsek A, Cakir SS, Yeloglu HO, Sahin F (2011) KLOTHO gene polymorphism of G395A is associated with kidney stones. Nephrology 33:337–343

    CAS  Google Scholar 

  18. Majumdar V, Christopher R (2011) Association of exonic variants of Klotho with metabolic syndrome in Asian Indians. Clin Chim Acta 412:1116–1121

    Article  PubMed  CAS  Google Scholar 

  19. Xu C, Song RJ, Yang J, Jiang B, Wang XL, Wu W, Zhang W (2013) Klotho gene polymorphism of rs3752472 is associated with the risk of urinary calculi in the population of Han nationality in Eastern China. Gene. doi:10.1016/j.gene.2013.06.001

    Google Scholar 

  20. Kuro-o M (2009) Klotho and aging. Biochim Biophys Acta 1790:1049–1058

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Arking DE, Krebsova A, Macek M Sr, Macek M Jr, Arking A, Mian IS, Fried L, Hamosh A, Dey S, McIntosh I, Dietz HC (2002) Association of human aging with a functional variant of klotho. Proc Natl Acad Sci USA 99:856–861

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Arking DE, Becker DM, Yanek LR, Fallin D, Judge DP, Moy TF, Becker LC, Dietz HC (2003) KLOTHO allele status and the risk of early-onset occult coronary artery disease. Am J Hum Genet 72:1154–1161

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Rhee EJ, Oh KW, Yun EJ, Jung CH, Lee WY, Kim SW, Baek KH, Kang MI, Park SW (2006) Relationship between polymorphisms G395A in promoter and C1818T in exon 4 of the KLOTHO gene with glucose metabolism and cardiovascular risk factors in Korean women. J Endocrinol Invest 29:613–618

    Article  PubMed  CAS  Google Scholar 

  24. Shimoyama Y, Nishio K, Hamajima N, Niwa T (2009) Klotho gene polymorphisms G395A and C1818T are associated with lipid and glucose metabolism, bone mineral density and systolic blood pressure in Japanese healthy subjects. Clin Chim Acta 406:134–138

    Article  PubMed  CAS  Google Scholar 

  25. Riancho JA, Valero C, Hernandez JL, Ortiz F, Zarrabeitia A, Alonso MA, Pena N, Pascual MA, Gonzalez-Macias J, Zarrabeitia MT (2007) Association of the F352V variant of the Klotho gene with bone mineral density. Biogerontology 8:121–127

    Article  PubMed  CAS  Google Scholar 

  26. Yamada Y, Ando F, Niino N, Shimokata H (2005) Association of polymorphisms of the androgen receptor and Klotho genes with bone mineral density in Japanese women. J Mol Med 83:50–57

    Article  PubMed  CAS  Google Scholar 

  27. Song SY, Kim SR, Ahn G, Choi HY (2003) Pathologic characteristics of prostatic adenocarcinomas: a mapping analysis of Korean patients. Prostate Cancer Prostatic Dis 6:143–147

    Article  PubMed  CAS  Google Scholar 

  28. Oliphant A, Barker DL, Stuelpnagel JR, Chee MS (2002) BeadArray technology: enabling an accurate, cost-effective approach to high-throughput genotyping. Biotechniques Suppl 56–58:60–61

    Google Scholar 

  29. Morris JA, Gardner MJ (1988) Calculating confidence intervals for relative risks (ORs) and standardised ratios and rates. Br Med J 296:1313–1316

    Article  CAS  Google Scholar 

  30. Jung KW, Park S, Won YJ, Kong HJ, Lee JY, Seo HG, Lee JS (2012) Prediction of cancer incidence and mortality in Korea. Cancer Res Treat 44:25–31

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Menashe I, Rosenberg PS, Chen BE (2008) PGA: power calculator for case-control genetic association analyses. BMC Genet 9:36

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hedrick PW (1987) Gametic disequilibrium measures: proceed with caution. Genetics 117:331–341

    PubMed  CAS  PubMed Central  Google Scholar 

  33. Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68:978–989

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Nyholt DR (2004) A simple correction for multiple testing for single-nucleotide polymorphisms in linkage disequilibrium with each other. Am J Hum Genet 74:765–769

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Laitman Y, Kuchenbaecker KB, Rantala J et al (2012) The KL-VS sequence variant of Klotho and cancer risk in BRCA1 and BRCA2 mutation carriers. Breast Cancer Res Treat 132:1119–1126

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Feng S, Dakhova O, Creighton CJ, Ittmann M (2013) Endocrine fibroblast growth factor FGF19 promotes prostate cancer progression. Cancer Res 73:2551–2562

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Kawano K, Ogata N, Chiano M et al (2002) Klotho gene polymorphisms associated with bone density of aged postmenopausal women. J Bone Miner Res 17:1744–1751

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Korea Healthcare Technology R&D Project, Ministry of Health, Welfare & Family Affairs, Republic of Korea (A085138) and by Grant No. 03-2010-012 from the SNUBH Research Fund.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seok-Soo Byun or Soon Chul Myung.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 74 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H.J., Lee, J., Lee, S.Y. et al. The association between KL polymorphism and prostate cancer risk in Korean patients. Mol Biol Rep 41, 7595–7606 (2014). https://doi.org/10.1007/s11033-014-3647-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3647-y

Keywords

Navigation