Skip to main content

Advertisement

Log in

Temporal gene expression analysis of Sjögren’s syndrome in C57BL/6.NOD-Aec1Aec2 mice based on microarray time-series data using an improved empirical Bayes approach

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The purpose of this study was to analyze the temporal gene expression in salivary and lacrimal glands of Sjögren’s syndrome (SS) based on time-series microarray data. We downloaded gene expression data GSE15640 and GSE48139 from gene expression omnibus and identified differentially expressed genes (DEGs) at varying time points using a modified Bayes analysis. Gene clustering was applied to analyze the expression differences in time series of the DEGs. Protein–protein interaction networks were used for searching the hub genes, and gene ontology (GO) and KEGG pathways were applied to analyze the DEGs at a functional level. A total of 744 and 1,490 DEGs were screened out from the salivary glands and lacrimal glands, respectively. Among these genes, 194 were overlapped between salivary glands and lacrimal glands, and these genes were compartmentalized into six clusters with different expression profiles. The GO terms of intracellular transport, protein transport and protein localization were significantly enriched by DEGs in salivary glands; while in the lacrimal glands, DEGs were significantly enriched in protein localization, establishment of protein localization and protein transport. Our results suggest that the SS pathogenesis was significantly different in time series in the salivary and lacrimal glands. The DEGs whose expressions may correlate with molecular mechanisms of SS in our study might provide new insight into the underlying cause or regulation of this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sjögren H (1993) Zur Kenntinis der keratoconjunctivitis sicca. Acta Ophthalmol Suppl (Copenh) 2:1–151

  2. Jonsson R, Moen K, Vestrheim D, Szodoray P (2002) Current issues in Sjögren’s syndrome. Oral Dis 8:130–140

    Article  PubMed  Google Scholar 

  3. Delaleu N, Jonsson R, Koller MM (2005) Sjögren’s syndrome. Eur J Oral Sci 113:101–113

    Article  CAS  PubMed  Google Scholar 

  4. Delaleu N, Jonsson MV, Appel S, Jonsson R (2008) New concepts in the pathogenesis of Sjögren’s syndrome. Rheum Dis Clin North Am 34:833–845

    Article  PubMed  Google Scholar 

  5. Cha S, Nagashima H, Brown VB, Peck AB, Humphreys-Beher MG (2002) Two NOD Idd-associated intervals contribute synergistically to the development of autoimmune exocrinopathy (Sjögren’s syndrome) on a healthy murine background. Arthritis Rheum 46:1390–1398

    Article  CAS  PubMed  Google Scholar 

  6. Cha S, Peck A, Humphreys-Beher M (2002) Progress in understanding autoimmune exocrinopathy using the non-obese diabetic mouse: an update. Crit Rev Oral Biol 13:5–16

    Article  CAS  Google Scholar 

  7. Nguyen C, Cha S, Peck A (2007) Sjögren’s syndrome (SjS)-like disease of mice: the importance of B lymphocytes and autoantibodies. Front Biosci 12:1767

    Article  CAS  PubMed  Google Scholar 

  8. Peck AB, Saylor BT, Nguyen L, Sharma A, She J-X, Nguyen CQ, Mcindoe RA (2011) Gene expression profiling of early-phase Sjögren’s syndrome in C57BL/6. NOD-Aec1Aec2 mice identifies focal adhesion maturation associated with infiltrating leukocytes. Invest Ophthalmol Vis Sci 52:5647–5655

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Horvath S, Nazmul-Hossain AN, Pollard RP et al (2012) Systems analysis of primary Sjögren’s syndrome pathogenesis in salivary glands identifies shared pathways in human and a mouse model. Arthritis Res Ther 14:R238

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Xuan J, Shen L, Malyavantham K, Pankewycz O, Ambrus JL Jr, Suresh L (2013) Temporal histological changes in lacrimal and major salivary glands in mouse models of Sjögren’s syndrome. BMC Oral Health 13:51

    Article  PubMed Central  PubMed  Google Scholar 

  11. Nguyen CQ, Sharma A, Lee BH, She JX, Mcindoe RA, Peck AB (2009) Differential gene expression in the salivary gland during development and onset of xerostomia in Sjögren’s syndrome-like disease of the C57BL/6.NOD-Aec1Aec2 mouse. Arthritis Res Ther 11:R56

    Article  PubMed Central  PubMed  Google Scholar 

  12. Peck AB, Saylor BT, Nguyen L, Sharma A, She JX, Nguyen CQ, Mcindoe RA (2011) Gene expression profiling of early-phase Sjögren’s syndrome in C57BL/6.NOD-Aec1Aec2 mice identifies focal adhesion maturation associated with infiltrating leukocytes. Invest Ophthalmol Vis Sci 52:5647–5655

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Nguyen CQ, Sharma A, She JX, Mcindoe RA, Peck AB (2009) Differential gene expressions in the lacrimal gland during development and onset of keratoconjunctivitis sicca in Sjögren’s syndrome (SJS)-like disease of the C57BL/6.NOD-Aec1Aec2 mouse. Exp Eye Res 88:398–409

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Team RDC (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing

  15. Gautier L, Cope L, Bolstad BM, Irizarry RA (2004) affy–analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20:307–315

    Article  CAS  PubMed  Google Scholar 

  16. Fujita A, Sato J, Rodrigues L, Ferreira C, Sogayar M (2006) Evaluating different methods of microarray data normalization. BMC Bioinform 7:469

    Article  Google Scholar 

  17. Wirapati P, Sotiriou C, Kunkel S et al (2008) Meta-analysis of gene expression profiles in breast cancer: toward a unified understanding of breast cancer subtyping and prognosis signatures. Breast Cancer Res 10:R65

    Article  PubMed Central  PubMed  Google Scholar 

  18. Aryee M, Gutierrez-Pabello J, Kramnik I, Maiti T, Quackenbush J (2009) An improved empirical bayes approach to estimating differential gene expression in microarray time-course data: BETR (Bayesian Estimation of Temporal Regulation). BMC Bioinform 10:409

    Article  Google Scholar 

  19. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4:249–264

    Article  PubMed  Google Scholar 

  20. Tárraga J, Medina I, Carbonell J et al (2008) GEPAS, a web-based tool for microarray data analysis and interpretation. Nucleic Acids Res 36:W308–W314

    Article  PubMed Central  PubMed  Google Scholar 

  21. Da Wei Huang BTS, Lempicki RA (2008) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57

    Article  Google Scholar 

  22. Jensen LJ, Kuhn M, Stark M et al (2009) STRING 8—a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res 37:D412–D416

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Szklarczyk D, Franceschini A, Kuhn M et al (2011) The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 39:D561–D568

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Nguyen CQ, Sharma A, Lee BH, She J-X, Mcindoe RA, Peck AB (2009) Differential gene expression in the salivary gland during development and onset of xerostomia in Sjögren’s syndrome-like disease of the C57BL/6. NOD-Aec1Aec2 mouse. Arthritis Res Ther 11:R56

    Article  PubMed Central  PubMed  Google Scholar 

  25. Horvath S, Zhang B, Carlson M et al (2006) Analysis of oncogenic signaling networks in glioblastoma identifies ASPM as a molecular target. Proc Natl Acad Sci USA 103:17402–17407

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Bavi P, Uddin S, Ahmed M et al (2011) Bortezomib stabilizes mitotic cyclins and prevents cell cycle progression via inhibition of UBE2C in colorectal carcinoma. Am J Pathol 178:2109–2120

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Viret C, Janeway CA Jr (2003) Self-specific MHC class II-restricted CD4-CD8- T cells that escape deletion and lack regulatory activity. J Immunol 170:201–209

    Article  CAS  PubMed  Google Scholar 

  28. Suh CH, Freed JH, Cohen PL (2003) T cell reactivity to MHC class II-bound self peptides in systemic lupus erythematosus-prone MRL/lpr mice. J Immunol 170:2229–2235

    Article  CAS  PubMed  Google Scholar 

  29. Jabs DA, Enger C, Prendergast RA (1991) Murine models of Sjögren’s syndrome. Evolution of the lacrimal gland inflammatory lesions. Invest Ophthalmol Vis Sci 32:371–380

    CAS  PubMed  Google Scholar 

  30. Brozovic S, Vucicevic-Boras V, Mravak-Stipetic M, Jukic S, Kleinheinz J, Lukac J (2002) Salivary levels of vascular endothelial growth factor (VEGF) in recurrent aphthous ulceration. J Oral Pathol Med 31:106–108

    Article  CAS  PubMed  Google Scholar 

  31. Taichman NS, Cruchley AT, Fletcher LM et al (1998) Vascular endothelial growth factor in normal human salivary glands and saliva: a possible role in the maintenance of mucosal homeostasis. Lab Invest 78:869–875

    CAS  PubMed  Google Scholar 

  32. Zhou B-BS, Elledge SJ (2000) The DNA damage response: putting checkpoints in perspective. Nature 408:433–439

    Article  CAS  PubMed  Google Scholar 

  33. Çelenligil-Nazliel H, Palali A, Ayhan A, Ruacan S (2003) Analysis of in situ proliferative activity in oral gingival epithelium in patients with xerostomia. J Periodontol 74:247–254

    Article  PubMed  Google Scholar 

  34. Eskelinen E-L, Tanaka Y, Saftig P (2003) At the acidic edge: emerging functions for lysosomal membrane proteins. Trends Cell Biol 13:137–145

    Article  CAS  PubMed  Google Scholar 

  35. Janvier K, Bonifacino JS (2005) Role of the endocytic machinery in the sorting of lysosome-associated membrane proteins. Mol Biol Cell 16:4231–4242

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Bagshaw RD, Mahuran DJ, Callahan JW (2005) A proteomic analysis of lysosomal integral membrane proteins reveals the diverse composition of the organelle. Mol Cell Proteomics 4:133–143

    Article  CAS  PubMed  Google Scholar 

  37. Segal B, Thomas W, Rogers T et al (2008) Prevalence, severity, and predictors of fatigue in subjects with primary Sjögren’s syndrome. Arthritis Care Res (Hoboken) 59:1780–1787

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Shanghai Municipal Health and Family Planning Commission (Project No. 20114016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luan Xue.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Xue, L., Yang, Y. et al. Temporal gene expression analysis of Sjögren’s syndrome in C57BL/6.NOD-Aec1Aec2 mice based on microarray time-series data using an improved empirical Bayes approach. Mol Biol Rep 41, 5953–5960 (2014). https://doi.org/10.1007/s11033-014-3471-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3471-4

Keywords

Navigation