Skip to main content
Log in

Abiotic stress response in yeast and metal-binding ability of a type 2 metallothionein-like protein (PutMT2) from Puccinellia tenuiflora

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Metallothioneins are low-molecular weight and cysteine-rich metal-binding proteins that play predominant cellular roles in the scavenging of reactive oxygen species and in mediating metal metabolism. To evaluate the role of a type-2 metallothionein-like gene from Puccinellia tenuiflora (PutMT2), the gene was over-expressed in yeast, and growth was assessed under a variety of abiotic stress conditions including peroxide (H2O2), salinity (NaCl and NaHCO3), and metal stress. PutMT2 overexpression in yeast improved the tolerance of cells to H2O2, NaCl, NaHCO3, Zn2+, Fe2+, Fe3+, Cd2+, Cr6+, and Ag+, but increased the sensitivity of cells to Mn2+, Co2+, Cu2+, and Ni2+ compared with control cells. PutMT2 was then expressed in Escherichia coli BL21as a glutathione S-transferase (GST) fusion protein (GST-PutMT2), and the metal-binding ability of GST-PutMT2 was analyzed and compared with GST alone using inductively coupled plasma atomic emission spectroscopy. Results showed that PutMT2 could bind to Cr, Cd, Co, Ag, Ba, Pb, Mn, Zn, Fe, Cu, P, Al, and Mg, but not Ni and As. There was no evidence to suggest that PutMT2 exhibited a specific or selective binding tendency to any individual metal ion. PutMT2 protein bound to Zn, Na, and Cu in vivo, perhaps with the highest affinity for Cu. Taken together, our results suggest that PutMT2 protein could play an important role in improving metal tolerance by metal binding in yeast. However, additional studies are required to confirm these results and to clarify the function of PutMT2 in transgenic plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jin S, Cheng Y, Guan Q, Liu D, Takano T, Liu S (2006) A metallothionein-like protein of rice (rgMT) functions in E. coli and its gene expression is induced by abiotic stresses. Biotechnol Lett 28(21):1749–1753. doi:10.1007/s10529-006-9152-1

    Article  CAS  PubMed  Google Scholar 

  2. Hassinen VH, Tervahauta AI, Schat H, Kärenlampi SO (2011) Plant metallothioneins—metal chelators with ROS scavenging activity? Plant Biol 13(2):225–232. doi:10.1111/j.1438-8677.2010.00398.x

    Article  CAS  PubMed  Google Scholar 

  3. Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182. doi:10.1146/annurev.arplant.53.100301.135154

    Article  CAS  PubMed  Google Scholar 

  4. Freisinger E (2011) Structural features specific to plant metallothioneins. J Biol Inorg Chem 16(7):1035–1045. doi:10.1007/s00775-011-0801-z

    Article  CAS  PubMed  Google Scholar 

  5. Grennan AK (2011) Metallothioneins, a diverse protein family. Plant Physiol 155(4):1750–1751. doi:10.1104/pp.111.900407

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Mir G (2004) A plant type 2 metallothionein (MT) from cork tissue responds to oxidative stress. J Exp Bot 55(408):2483–2493. doi:10.1093/jxb/erh254

    Article  CAS  PubMed  Google Scholar 

  7. Nishiuchi S, Liu S, Takano T (2007) Isolation and characterization of a metallothionein-1 protein in Chloris virgata Swartz that enhances stress tolerances to oxidative, salinity and carbonate stress in Saccharomyces cerevisiae. Biotechnol Lett 29(8):1301–1305. doi:10.1007/s10529-007-9396-4

    Article  CAS  PubMed  Google Scholar 

  8. Yang Z, Wu Y, Li Y, Ling H-Q, Chu C (2009) OsMT1a, a type 1 metallothionein, plays the pivotal role in zinc homeostasis and drought tolerance in rice. Plant Mol Biol 70(1–2):219–229. doi:10.1007/s11103-009-9466-1

    Article  CAS  PubMed  Google Scholar 

  9. Yuan J, Chen D, Ren Y, Zhang X, Zhao J (2008) Characteristic and expression analysis of a Metallothionein gene, OsMT2b, down-regulated by cytokinin suggests functions in root development and seed embryo germination of rice. Plant Physiol 146(4):1637–1650. doi:10.1104/pp.107.110304

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Xue T, Li X, Zhu W, Wu C, Yang G, Zheng C (2009) Cotton metallothionein GhMT3a, a reactive oxygen species scavenger, increased tolerance against abiotic stress in transgenic tobacco and yeast. J Exp Bot 60(1):339–349. doi:10.1093/jxb/ern291

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Zhu W, Zhao D-X, Miao Q, Xue T–T, Li X-Z, Zheng C–C (2009) Arabidopsis thaliana metallothionein, AtMT2a, mediates ROS balance during oxidative stress. J Plant Biol 52(6):585–592. doi:10.1007/s12374-009-9076-0

    Article  CAS  Google Scholar 

  12. Kim YO, Jung S, Kim K, Bae HJ (2013) Role of pCeMT, a putative metallothionein from Colocasia esculenta, in response to metal stress. Plant Physiol Biochem 64:25–32. doi:10.1016/j.plaphy.2012.12.009

    Article  CAS  PubMed  Google Scholar 

  13. Wong HL, Sakamoto T, Kawasaki T, Umemura K, Shimamoto K (2004) Down-regulation of metallothionein, a reactive oxygen scavenger, by the small GTPase OsRac1 in rice. Plant Physiol 135(3):1447–1456. doi:10.1104/pp.103.036384

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Yang J, Wang Y, Liu G, Yang C, Li C (2010) Tamarix hispida metallothionein-like ThMT3, a reactive oxygen species scavenger, increases tolerance against Cd2+, Zn2+, Cu2+, and NaCl in transgenic yeast. Mol Biol Rep 38(3):1567–1574. doi:10.1007/s11033-010-0265-1

    Article  PubMed  Google Scholar 

  15. Foley RC, Liang ZM, Singh KB (1997) Analysis of type 1 metallothionein cDNAs in Vicia faba. Plant Mol Biol 33(4):583–591

    Article  CAS  PubMed  Google Scholar 

  16. Lei W, YueJin Q, RenJie D, LiLi W, YuCheng W, TingBo J (2009) Identification of MT overexpression in tobacco and analysis of Cd2+ resistance in transgenic plants. Plant Physiol Commun 45(4):318–322

    Google Scholar 

  17. Nezhad RM, Shahpiri A, Mirlohi A (2013) Heterologous expression and metal-binding characterization of a type 1 metallothionein isoform (OsMTI-1b) from rice (Oryza sativa). Protein J 32(2):131–137. doi:10.1007/s10930-013-9469-2

    Article  CAS  PubMed  Google Scholar 

  18. Guo WJ, Meetam M, Goldsbrough PB (2008) Examining the specific contributions of individual Arabidopsis metallothioneins to copper distribution and metal tolerance. Plant Physiol 146(4):1697–1706. doi:10.1104/pp.108.115782

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Sekhar K, Priyanka B, Reddy VD, Rao KV (2011) Metallothionein 1 (CcMT1) of pigeonpea (Cajanus cajan, L.) confers enhanced tolerance to copper and cadmium in Escherichia coli and Arabidopsis thaliana. Environ Exp Bot 72(2):131–139. doi:10.1016/j.envexpbot.2011.02.017

    Article  CAS  Google Scholar 

  20. Huang G-Y, Wang Y-S (2010) Expression and characterization analysis of type 2 metallothionein from grey mangrove species (Avicennia marina) in response to metal stress. Aquat Toxicol 99(1):86–92. doi:10.1016/j.aquatox.2010.04.004

    Article  CAS  PubMed  Google Scholar 

  21. Huang G-Y, Wang Y-S, Ying G–G (2011) Cadmium-inducible BgMT2, a type 2 metallothionein gene from mangrove species (Bruguiera gymnorrhiza), its encoding protein shows metal-binding ability. J Exp Mar Biol Ecol 405(1–2):128–132. doi:10.1016/j.jembe.2011.05.034

    Article  CAS  Google Scholar 

  22. Zhigang A, Cuijie L, Yuangang Z, Yejie D, Wachter A, Gromes R, Rausch T (2006) Expression of BjMT2, a metallothionein 2 from Brassica juncea, increases copper and cadmium tolerance in Escherichia coli and Arabidopsis thaliana, but inhibits root elongation in Arabidopsis thaliana seedlings. J Exp Bot 57(14):3575–3582. doi:10.1093/jxb/erl102

    Article  PubMed  Google Scholar 

  23. Hassinen VH, Tuomainen M, Peraniemi S, Schat H, Karenlampi SO, Tervahauta AI (2008) Metallothioneins 2 and 3 contribute to the metal-adapted phenotype but are not directly linked to Zn accumulation in the metal hyperaccumulator, Thlaspi caerulescens. J Exp Bot 60(1):187–196. doi:10.1093/jxb/ern287

    Article  PubMed Central  PubMed  Google Scholar 

  24. Grispen VMJ, Irtelli B, Hakvoort HWJ, Vooijs R, Bliek T, ten Bookum WM, Verkleij JAC, Schat H (2009) Expression of the Arabidopsis metallothionein 2b enhances arsenite sensitivity and root to shoot translocation in tobacco. Environ Exp Bot 66(1):69–73

    Article  CAS  Google Scholar 

  25. Ahn YO, Kim SH, Lee J, Kim H, Lee HS, Kwak SS (2012) Three Brassica rapa metallothionein genes are differentially regulated under various stress conditions. Mol Biol Rep 39(3):2059–2067. doi:10.1007/s11033-011-0953-5

    Article  CAS  PubMed  Google Scholar 

  26. Sereno ML, Almeida RS, Nishimura DS, Figueira A (2007) Response of sugarcane to increasing concentrations of copper and cadmium and expression of metallothionein genes. J Plant Physiol 164(11):1499–1515. doi:10.1016/j.jplph.2006.09.007

    Article  CAS  PubMed  Google Scholar 

  27. Wang Y, Yang C, Liu G, Jiang J (2007) Development of a cDNA microarray to identify gene expression of Puccinellia tenuiflora under saline-alkali stress. Plant Physiol Biochem 45(8):567–576. doi:10.1016/j.plaphy.2007.05.006

    Article  CAS  PubMed  Google Scholar 

  28. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. doi:10.1093/nar/22.22.4673

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Gietz RD, Schiestl RH, Willems AR, Woods RA (1995) Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11(4):355–360. doi:10.1002/yea.320110408

    Article  CAS  PubMed  Google Scholar 

  30. Liu S, Zhang X (2004) Expression and purification of a novel rice (Oryza sativa L.) mitochondrial ATP synthase small subunit in Escherichia coli. Protein Expr Purif 37(2):306–310. doi:10.1016/j.pep.2004.06.010

    Article  PubMed  Google Scholar 

  31. Domenech J, Tinti A, Capdevila M, Atrian S, Torreggiani A (2007) Structural study of the zinc and cadmium complexes of a type 2 plant (Quercus suber) metallothionein: insights by vibrational spectroscopy. Biopolymers 86(3):240–248. doi:10.1002/bip.20729

    Article  CAS  PubMed  Google Scholar 

  32. Wan X, Freisinger E (2009) The plant metallothionein 2 from Cicer arietinum forms a single metal-thiolate cluster. Metallomics 1(6):489–500. doi:10.1039/b906428a

    Article  CAS  PubMed  Google Scholar 

  33. Garcia-Hernandez M, Murphy A, Taiz L (1998) Metallothioneins 1 and 2 have distinct but overlapping expression patterns in Arabidopsis. Plant Physiol 118(2):387–397

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Zhou YL, Chu P, Chen HH, Li Y, Liu J, Ding Y, Tsang EWT, Jiang LW, Wu KQ, Huang SZ (2012) Overexpression of Nelumbo nucifera metallothioneins 2a and 3 enhances seed germination vigor in Arabidopsis. Planta 235(3):523–537. doi:10.1007/s00425-011-1527-4

    Article  CAS  PubMed  Google Scholar 

  35. Zhang Y-W, Tam NFY, Wong YS (2004) Cloning and characterization of type 2 metallothionein-like gene from a wetland plant, Typha latifolia. Plant Sci 167(4):869–877. doi:10.1016/j.plantsci.2004.05.040

    Article  CAS  Google Scholar 

  36. Cui GH, Mao Y, Huang LQ, Yuan Y, Wang XY (2007) Functional genomics studies of Salvia miltiorrhiza III. analyze of metallothionein (MT-2) genes. Zhongguo Zhong Yao Za Zhi 32(14):1393–1395

    CAS  PubMed  Google Scholar 

  37. Cozza R, Bruno L, Bitonti MB (2013) Expression pattern of a type-2 metallothionein gene in a wild population of the psammophyte Silene nicaeensis. Protoplasma 250(1):381–389. doi:10.1007/s00709-012-0425-3

    Article  CAS  PubMed  Google Scholar 

  38. Emoto T, Kurasaki M, Oikawa S, Suzuki-Kurasaki M, Okabe M, Yamasaki F, Kojima Y (1996) Roles of the conserved serines of metallothionein in cadmium binding. Biochem Genet 34(5–6):239–251

    Article  CAS  PubMed  Google Scholar 

  39. Domènech J, Mir G, Huguet G, Capdevila M, Molinas M, Atrian S (2006) Plant metallothionein domains: functional insight into physiological metal binding and protein folding. Biochimie 88(6):583–593. doi:10.1016/j.biochi.2005.11.002

    Article  PubMed  Google Scholar 

  40. Akashi K, Nishimura N, Ishida Y, Yokota A (2004) Potent hydroxyl radical-scavenging activity of drought-induced type-2 metallothionein in wild watermelon. Biochem Biophys Res Commun 323(1):72–78. doi:10.1016/j.bbrc.2004.08.056

    Article  CAS  PubMed  Google Scholar 

  41. Thornalley PJ, Vašák M (1985) Possible role for metallothionein in protection against radiation-induced oxidative stress: kinetics and mechanism of its reaction with superoxide and hydroxyl radicals. Biochim Biophys Acta (BBA) Protein Struct Mol Enzymol 827(1):36–44

    Article  CAS  Google Scholar 

  42. Sato M, Bremner I (1993) Oxygen free radicals and metallothionein. Free Radic Biol Med 14(3):325–337

    Article  CAS  PubMed  Google Scholar 

  43. Mello-Filho AC, Chubatsu LS, Meneghini R (1988) V79 Chinese-hamster cells rendered resistant to high cadmium concentration also become resistant to oxidative stress. Biochem J 256:475–479

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Greenstock C, Jinot C, Whitehouse R, Sargent M (1987) DNA radiation damage and its modification by metallothionein. Free Radic Res 2(4–6):233–239

    Article  CAS  Google Scholar 

  45. Murphy A, Zhou J, Goldsbrough PB, Taiz L (1997) Purification and immunological identification of metallothioneins 1 and 2 from Arabidopsis thaliana. Plant Physiol 113(4):1293–1301

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Abdullah SNA, Cheah S, Murphy DJ (2002) Isolation and characterisation of two divergent type 3 metallothioneins from oil palm, Elaeis guineensis. Plant Physiol Biochem 40(3):255–263

    Article  CAS  Google Scholar 

  47. Park JD, Liu Y, Klaassen CD (2001) Protective effect of metallothionein against the toxicity of cadmium and other metals. Toxicology 163(2):93–100

    Article  CAS  PubMed  Google Scholar 

  48. Mosleh Y, Parispalacios S, Biagiantirisbourg S (2006) Metallothioneins induction and antioxidative response in aquatic worms Tubifex tubifex (Oligochaeta, Tubificidae) exposed to copper. Chemosphere 64(1):121–128. doi:10.1016/j.chemosphere.2005.10.045

    Article  CAS  PubMed  Google Scholar 

  49. Znidarsic N, Tusek-Znidaric M, Falnoga I, Scancar J, Strus J (2005) Metallothionein-like proteins and zinc–copper interaction in the hindgut of Porcellio scaber (Crustacea: Isopoda) exposed to zinc. Biol Trace Elem Res 106(3):253–264. doi:10.1385/BTER:106:3:253

    Article  CAS  PubMed  Google Scholar 

  50. Ren YJ, Liu Y, Chen HY, Li G, Zhang XL, Zhao J (2012) Type 4 metallothionein genes are involved in regulating Zn ion accumulation in late embryo and in controlling early seedling growth in Arabidopsis. Plant Cell Environ 35(4):770–789. doi:10.1111/j.1365-3040.2011.02450.x

    Article  CAS  PubMed  Google Scholar 

  51. Blindauer CA (2008) Zinc-handling in cyanobacteria: an update. Chem Biodivers 5(10):1990–2013. doi:10.1002/cbdv.200890183

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by two Grants from Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT) to Shenkui Liu and Program for New Century Excellent Talents in University (NECT-10-0314) to Xinxin Zhang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinxin Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Takano, T., Liu, S. et al. Abiotic stress response in yeast and metal-binding ability of a type 2 metallothionein-like protein (PutMT2) from Puccinellia tenuiflora . Mol Biol Rep 41, 5839–5849 (2014). https://doi.org/10.1007/s11033-014-3458-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3458-1

Keywords

Navigation