Skip to main content

Advertisement

Log in

Development of ARMS-PCR assay for genotyping of Pro12Ala SNP of PPARG gene: a cost effective way for case–control studies of type 2 diabetes in developing countries

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Type 2 diabetes (T2D) is a prevalent metabolic disorder across the globe. Research is underway on various aspects including genetics to understand and control the global epidemic of diabetes. Recently, several SNPs in various genes have been associated with T2D. These association studies are mainly carried out in the developed countries through Genome Wide Association Scans, with follow-up replication/validation studies by high-throughput genotyping techniques (e.g. Taqman Technology). Although, similar studies could be conducted in developing countries, however, the limiting factors are the associated cost and expertise. These factors hamper research into the genetic association and replication studies from low-income countries to figure out the role of putatively associated SNPs in diabetes. Although, there are several SNP detection methods (e.g. Taqman assay, Dot-blot, PCR-RFLP, DGGE, SSCP) but these are either expensive or labor intensive or less sensitive. Hence, our aim was to develop a low-cost method for the validation of PPARG (Pro12Ala, CCA>GCA) SNP (rs1801282) for its association with T2D. Here, we developed a cost-effective and rapid amplification refractory mutation specific-PCR (ARMS-PCR) method for this SNP detection. We successfully genotyped PPARG SNPs (Pro12Ala) in human samples and the validity of this method was confirmed by DNA sequencing of a few representative samples for the three different genotypes. Furthermore, ARMS-PCR was applied to T2D patients and control samples for the screening of this SNP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Whiting DR, Guariguata L, Weil C, Shaw J (2011) IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract 94(3):311–321

    Article  PubMed  Google Scholar 

  2. Shera AS, Jawad F, Maqsood A (2007) Prevalence of diabetes in Pakistan. Diabetes Res Clin Pract 76(2):219–222

    Article  CAS  PubMed  Google Scholar 

  3. Shera AS, Basit A, Fawwad A, Hakeem R, Ahmedani MY, Hydrie MZ, Khwaja IA (2010) Pakistan National Diabetes Survey: prevalence of glucose intolerance and associated factors in the Punjab Province of Pakistan. Prim Care Diabetes 4(2):79–83

    Article  PubMed  Google Scholar 

  4. Zafar J, Bhatti F, Akhtar N, Rasheed U, Bashir R, Humayun S, Waheed A, Younus F, Nazar M, Umaimato (2011) Prevalence and risk factors for diabetes mellitus in a selected urban population of a city in Punjab. J Pak Med Assoc 61(1):40–47

    PubMed  Google Scholar 

  5. Kyvik KO, Green A, Beck-Nielsen H (1995) Concordance rates of insulin dependent diabetes mellitus: a population based study of young Danish twins. BMJ 311(7010):913–917

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. McCarthy MI (2010) Genomics, type 2 diabetes, and obesity. N Engl J Med 363(24):2339–2350

    Article  CAS  PubMed  Google Scholar 

  7. Travers ME, McCarthy MI (2011) Type 2 diabetes and obesity: genomics and the clinic. Hum Genet 130(1):41–58

    Article  CAS  PubMed  Google Scholar 

  8. Dreyer C, Krey G, Keller H, Givel F, Helftenbein G, Wahli W (1992) Control of the peroxisomal beta-oxidation pathway by a novel family of nuclear hormone receptors. Cell 68(5):879–887

    Article  CAS  PubMed  Google Scholar 

  9. Wanders RJ, Waterham HR (2006) Biochemistry of mammalian peroxisomes revisited. Annu Rev Biochem 75:295–332

    Article  CAS  PubMed  Google Scholar 

  10. Chawla A, Schwarz EJ, Dimaculangan DD, Lazar MA (1994) Peroxisome proliferator-activated receptor (PPAR) gamma: adipose-predominant expression and induction early in adipocyte differentiation. Endocrinology 135(2):798–800

    CAS  PubMed  Google Scholar 

  11. Sanghera DK, Demirci FY, Been L, Ortega L, Ralhan S, Wander GS, Mehra NK, Singh J, Aston CE, Mulvihill JJ, Kamboh IM (2010) PPARG and ADIPOQ gene polymorphisms increase type 2 diabetes mellitus risk in Asian Indian Sikhs: Pro12Ala still remains as the strongest predictor. Metabolism 59(4):492–501

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Martinez-Gomez LE, Cruz M, Martinez-Nava GA, Madrid-Marina V, Parra E, Garcia-Mena J, Espinoza-Rojo M, Estrada-Velasco BI, Piza-Roman LF, Aguilera P, Burguete-Garcia AI (2011) A replication study of the IRS1, CAPN10, TCF7L2, and PPARG gene polymorphisms associated with type 2 diabetes in two different populations of Mexico. Ann Hum Genet 75(5):612–620

    Article  CAS  PubMed  Google Scholar 

  13. Kwok PY, Chen X (2003) Detection of single nucleotide polymorphisms. Curr Issues Mol Biol 5(2):43–60

    CAS  PubMed  Google Scholar 

  14. Sobrino B, Brion M, Carracedo A (2005) SNPs in forensic genetics: a review on SNP typing methodologies. Forensic Sci Int 154(2–3):181–194

    Article  CAS  PubMed  Google Scholar 

  15. Twyman RM (2005) Single nucleotide polymorphism (SNP) genotyping techniques—an overview. In: Fuchs J, Podda M (eds) Encyclopedia of diagnostic genomics and proteomics, vol. 2. Marcel Dekker, Inc. (now CRC Press), New York, pp 1202–1207. doi:10.1081/E-EDGP120020761

    Google Scholar 

  16. Muller YL, Bogardus C, Beamer BA, Shuldiner AR, Baier LJ (2003) A functional variant in the peroxisome proliferator-activated receptor gamma2 promoter is associated with predictors of obesity and type 2 diabetes in Pima Indians. Diabetes 52(7):1864–1871

    Article  PubMed  Google Scholar 

  17. Montagnana M, Fava C, Nilsson PM, Engstrom G, Hedblad B, Lippi G, Minuz P, Berglund G, Melander O (2008) The Pro12Ala polymorphism of the PPARG gene is not associated with the metabolic syndrome in an urban population of middle-aged Swedish individuals. Diabet Med 25(8):902–908

    Article  CAS  PubMed  Google Scholar 

  18. Haseeb A, Iliyas M, Chakrabarti S, Farooqui AA, Naik SR, Ghosh S, Suragani M, Ehtesham NZ (2009) Single-nucleotide polymorphisms in peroxisome proliferator-activated receptor gamma and their association with plasma levels of resistin and the metabolic syndrome in a South Indian population. J Biosci 34(3):405–414

    Article  CAS  PubMed  Google Scholar 

  19. Vimaleswaran KS, Radha V, Jayapriya MG, Ghosh S, Majumder PP, Rao MR, Mohan V (2010) Evidence for an association with type 2 diabetes mellitus at the PPARG locus in a South Indian population. Metabolism 59(4):457–462

    Article  CAS  PubMed  Google Scholar 

  20. Newton CR, Graham A, Heptinstall LE, Powell SJ, Summers C, Kalsheker N, Smith JC, Markham AF (1989) Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucleic Acids Res 17(7):2503–2516

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. George S, Sokolenko S, Aucoin MG (2012) Rapid and cost-effective baculovirus sample preparation method as a viable alternative to conventional preparation for quantitative real-time PCR. J Virol Methods 182(1–2):27–36

    Article  CAS  PubMed  Google Scholar 

  22. Baig SM (2007) Molecular diagnosis of beta-thalassemia by multiplex ARMS-PCR: a cost effective method for developing countries like Pakistan. Prenat Diagn 27(6):580–581

    Article  PubMed  Google Scholar 

  23. Zeggini E, Groves CJ, Parkinson JR, Halford S, Owen KR, Frayling TM, Walker M, Hitman GA, Levy JC, O’Rahilly S, Hattersley AT, McCarthy MI (2005) Large-scale studies of the association between variation at the TNF/LTA locus and susceptibility to type 2 diabetes. Diabetologia 48(10):2013–2017

    Article  CAS  PubMed  Google Scholar 

  24. Old JM (2000) The amplification refractory mutation system. The nucleic acid protocols handbook. p 723–727

  25. Kwok S, Kellogg DE, McKinney N, Spasic D, Goda L, Levenson C, Sninsky JJ (1990) Effects of primer-template mismatches on the polymerase chain reaction: human immunodeficiency virus type 1 model studies. Nucleic Acids Res 18(4):999–1005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Ye S, Dhillon S, Ke X, Collins AR, Day IN (2001) An efficient procedure for genotyping single nucleotide polymorphisms. Nucleic Acids Res 29(17):e88

  27. Duta-Cornescu G, Simon-Gruita A, Constantin N, Stanciu F, Banica MDD, Tuduce R, Cristea P, Stoian V (2009) A comparative study of ARMS–PCR and RFLP–PCR as methods for rapid SNP identification. Roman Biotechnol Lett 14(6):4845–4850

    CAS  Google Scholar 

  28. Shen GQ, Abdullah KG, Wang QK (2009) The TaqMan method for SNP genotyping. Methods Mol Biol 578:293–306

    Article  CAS  PubMed  Google Scholar 

  29. Jalil SF, Ahmed I, Gauhar Z, Ahmed M, Malik JM, John P, Bhatti A (2014) Association of Pro12Ala (rs1801282) variant of PPAR gamma with rheumatoid arthritis in a Pakistani population. Rheumatol Int 34(5):699–703. doi:10.1007/s00296-00013-02768-00292

Download references

Acknowledgments

All authors declare that there is no conflict of interest regarding this publication. This work was supported by the student grant from Higher Education Commission (HEC), Pakistan. Use of research facilities of National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan are greatly appreciated. We are also thankful to all our colleagues for their help during this study. We thank all patients and hospital staff who participated in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fazli Rabbi Awan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, M., Awan, F.R. & Baig, S.M. Development of ARMS-PCR assay for genotyping of Pro12Ala SNP of PPARG gene: a cost effective way for case–control studies of type 2 diabetes in developing countries. Mol Biol Rep 41, 5585–5591 (2014). https://doi.org/10.1007/s11033-014-3213-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3213-7

Keywords

Navigation