Skip to main content

Advertisement

Log in

Molecular identification and characterization of leucine aminopeptidase 2, an excretory-secretory product of Clonorchis sinensis

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Aminopeptidases serve vital roles in metabolism of hormones, neurotransmission, turnover of proteins and immunological regulations. Leucine aminopeptidases catalyze the hydrolysis of amino-acid residues from the N-terminus of proteins and peptides. In the present study, leucine aminopeptidase 2 (LAP2) gene of Clonorchis sinensis (C. sinensis) was isolated and identified from an adult cDNA library of C. sinensis. Recombinant CsLAP2 was expressed and purified in Escherichia coli BL21. The open reading frame of LAP2 contains 1,560 bp equivalent to 519 amino acids, a similarity analysis showed a relatively low homology with Homo sapiens (19.0 %), Trypanosoma cruzi (18.0 %), Mus musculus (19.3 %), and relatively high homology with Schistosoma mansoni (65.6 %). The optimum condition of rCsLAP2 enzyme activity was investigated using a fluorescent substrate of Leu-MCA at 37 °C and pH 7.5. The K m and V max values of rCsLAP2 were 18.2 μM and 10.7 μM/min, respectively. CsLAP2 gene expression can be detected at the stages of the adult worm, metacercaria, excysted metacercaria and egg of C. sinensis using real-time PCR, no difference was observed at the stages of the adult worm, metacercaria and egg. However, CsLAP2 showed a higher expression level at the stage of excysted metacercaria than the adult worm (3.90-fold), metacercaria (4.60-fold) and egg (4.59-fold). Histochemistry analysis showed that CsLAP2 was located at the tegument and excretory vesicle of metacercaria, and the tegument and intestine of adult worm. The immune response specific to rCsLAP2 was characterized by a mixed response patterns of Th1 and Th2, indicating a compounded humoral and cellular immune response. The combined results from the present study indicate that CsLAP2 was an important antigen exposed to host immune system, and probably implicated as potential role in interaction with host cells in clonorchiasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lun ZR, Gasser RB, Lai DH, Li AX, Zhu XQ et al (2005) Clonorchiasis: a key foodborne zoonosis in China. Lancet Infect Dis 5:31–41

    Article  PubMed  Google Scholar 

  2. Choi BI, Han JK, Hong ST, Lee KH (2004) Clonorchiasis and cholangiocarcinoma: etiologic relationship and imaging diagnosis. Clin Microbiol Rev 17:540–552

    Article  PubMed  Google Scholar 

  3. Mayer DA, Fried B (2007) The role of helminth infections in carcinogenesis. Adv Parasitol 65:239–296

    Article  PubMed  Google Scholar 

  4. Rim HJ (2005) Clonorchiasis: an update. J Helminthol 79:269–281

    Article  PubMed  Google Scholar 

  5. Wang CR, Qiu JH, Zhao JP, Xu LM, Yu WC et al (2006) Prevalence of helminthes in adult dogs in Heilongjiang Province, the People’s Republic of China. Parasitol Res 99:627–630

    Article  PubMed  CAS  Google Scholar 

  6. Zhou Z, Xia H, Hu X, Huang Y, Li Y et al (2008) Oral administration of a Bacillus subtilis spore-based vaccine expressing Clonorchis sinensis tegumental protein 22.3 kDa confers protection against Clonorchis sinensis. Vaccine 26:1817–1825

    Article  PubMed  CAS  Google Scholar 

  7. Li Y, Hu X, Liu X, Xu J, Hu F et al (2009) Molecular cloning and analysis of stage and tissue-specific expression of Cathepsin L-like protease from Clonorchis sinensis. Parasitol Res 105:447–452

    Article  PubMed  Google Scholar 

  8. Tian F, Lin D, Wu J, Gao Y, Zhang D et al (2010) Immune events associated with high level protection against Schistosoma japonicum infection in pigs immunized with UV-attenuated cercariae. PLoS One 5:e13408

    Article  PubMed  Google Scholar 

  9. Teixeira de Melo T, Michel de Araujo J, Do Valle Duraes F, Caliari MV, Oliveira SC et al (2010) Immunization with newly transformed Schistosoma mansoni schistosomula tegument elicits tegument damage, reduction in egg and parasite burden. Parasite Immunol 32:749–759

    Article  PubMed  CAS  Google Scholar 

  10. Chemale G, Perally S, LaCourse EJ, Prescott MC, Jones LM et al (2010) Comparative proteomic analysis of triclabendazole response in the liver fluke Fasciola hepatica. J Proteome Res 9:4940–4951

    Article  PubMed  CAS  Google Scholar 

  11. Kofta W, Mieszczanek J, Plucienniczak G, Wedrychowicz H (2000) Successful DNA immunisation of rats against fasciolosis. Vaccine 18:2985–2990

    Article  PubMed  CAS  Google Scholar 

  12. Lee JS, Kim IS, Sohn WM, Lee J, Yong TS (2006) A DNA vaccine encoding a fatty acid-binding protein of Clonorchis sinensis induces protective immune response in Sprague-Dawley rats. Scand J Immunol 63:169–176

    Article  PubMed  CAS  Google Scholar 

  13. Piacenza L, Acosta D, Basmadjian I, Dalton JP, Carmona C (1999) Vaccination with cathepsin L proteinases and with leucine aminopeptidase induces high levels of protection against fascioliasis in sheep. Infect Immun 67:1954–1961

    PubMed  CAS  Google Scholar 

  14. Curley GP, O’Donovan SM, McNally J, Mullally M, O’Hara H et al (1994) Aminopeptidases from Plasmodium falciparum, Plasmodium chabaudi chabaudi and Plasmodium berghei. J Eukaryot Microbiol 41:119–123

    Article  PubMed  CAS  Google Scholar 

  15. Marcilla A, De la Rubia JE, Sotillo J, Bernal D, Carmona C et al (2008) Leucine aminopeptidase is an immunodominant antigen of Fasciola hepatica excretory and secretory products in human infections. Clin Vaccine Immunol 15:95–100

    Article  PubMed  CAS  Google Scholar 

  16. Jia H, Nishikawa Y, Luo Y, Yamagishi J, Sugimoto C et al (2010) Characterization of a leucine aminopeptidase from Toxoplasma gondii. Mol Biochem Parasitol 170:1–6

    Article  PubMed  CAS  Google Scholar 

  17. Rinaldi G, Morales ME, Alrefaei YN, Cancela M, Castillo E et al (2009) RNA interference targeting leucine aminopeptidase blocks hatching of Schistosoma mansoni eggs. Mol Biochem Parasitol 167:118–126

    Article  PubMed  CAS  Google Scholar 

  18. Zhou LG, Liu BX, Sun LC, Hara K, Su WJ et al (2010) Identification of an aminopeptidase from the skeletal muscle of grass carp (Ctenopharyngodon idellus). Fish Physiol Biochem 36:953–962

    Article  PubMed  CAS  Google Scholar 

  19. Acosta D, Cancela M, Piacenza L, Roche L, Carmona C et al (2008) Fasciola hepatica leucine aminopeptidase, a promising candidate for vaccination against ruminant fasciolosis. Mol Biochem Parasitol 158:52–64

    Article  PubMed  CAS  Google Scholar 

  20. Song L, Chen S, Yu X, Wu Z, Xu J et al (2004) Molecular cloning and characterization of cDNA encoding a ubiquitin-conjugating enzyme from Clonorchis sinensis. Parasitol Res 94:227–232

    Article  PubMed  Google Scholar 

  21. Zheng N, Xu J, Wu Z, Chen J, Hu X et al (2005) Clonorchis sinensis: molecular cloning and functional expression of novel cytosolic malate dehydrogenase. Exp Parasitol 109:220–227

    Article  PubMed  CAS  Google Scholar 

  22. Umetsu H, Arai M, Ota T, Kudo R, Sugiura H et al (2003) Purification and properties of an aminopeptidase from the mid-gut gland of scallop (Patinopecten yessoensis). Comp Biochem Physiol B: Biochem Mol Biol 136:935–942

    Article  Google Scholar 

  23. Vickers I, Reeves EP, Kavanagh KA, Doyle S (2007) Isolation, activity and immunological characterisation of a secreted aspartic protease, CtsD, from Aspergillus fumigatus. Protein Expr Purif 53:216–224

    Article  PubMed  CAS  Google Scholar 

  24. Guillou F, Roger E, Mone Y, Rognon A, Grunau C et al (2007) Excretory-secretory proteome of larval Schistosoma mansoni and Echinostoma caproni, two parasites of Biomphalaria glabrata. Mol Biochem Parasitol 155:45–56

    Article  PubMed  CAS  Google Scholar 

  25. Kang JM, Sohn WM, Ju JW, Kim TS, Na BK (2010) Identification and characterization of a serine protease inhibitor of Clonorchis sinensis. Acta Trop 116:134–140

    Article  PubMed  CAS  Google Scholar 

  26. Na BK, Kang JM, Sohn WM (2008) CsCF-6, a novel cathepsin F-like cysteine protease for nutrient uptake of Clonorchis sinensis. Int J Parasitol 38:493–502

    Article  PubMed  CAS  Google Scholar 

  27. Yoo WG, Kim TI, Li S, Kwon OS, Cho PY et al (2009) Reference genes for quantitative analysis on Clonorchis sinensis gene expression by real-time PCR. Parasitol Res 104:321–328

    Article  PubMed  Google Scholar 

  28. Bai RK, Wong LJ (2004) Detection and quantification of heteroplasmic mutant mitochondrial DNA by real-time amplification refractory mutation system quantitative PCR analysis: a single-step approach. Clin Chem 50:996–1001

    Article  PubMed  CAS  Google Scholar 

  29. Hernandez-Gonzalez A, Valero ML, del Pino MS, Oleaga A, Siles-Lucas M (2010) Proteomic analysis of in vitro newly excysted juveniles from Fasciola hepatica. Mol Biochem Parasitol 172:121–128

    Article  PubMed  CAS  Google Scholar 

  30. Liu F, Cui SJ, Hu W, Feng Z, Wang ZQ et al (2009) Excretory/secretory proteome of the adult developmental stage of human blood fluke, Schistosoma japonicum. Mol Cell Proteomics 8:1236–1251

    Article  PubMed  CAS  Google Scholar 

  31. Zimic MJ, Infantes J, Lopez C, Velasquez J, Farfan M et al (2007) Comparison of the peptidase activity in the oncosphere excretory/secretory products of Taenia solium and Taenia saginata. J Parasitol 93:727–734

    Article  PubMed  CAS  Google Scholar 

  32. Acosta D, Goni F, Carmona C (1998) Characterization and partial purification of a leucine aminopeptidase from Fasciola hepatica. J Parasitol 84:1–7

    Article  PubMed  CAS  Google Scholar 

  33. Pokharel DR, Rathaur S (2008) Purification and characterization of a leucine aminopeptidase from the bovine filarial parasite Setaria cervi. Acta Trop 106:1–8

    Article  PubMed  CAS  Google Scholar 

  34. McCarthy E, Stack C, Donnelly SM, Doyle S, Mann VH et al (2004) Leucine aminopeptidase of the human blood flukes, Schistosoma mansoni and Schistosoma japonicum. Int J Parasitol 34:703–714

    Article  PubMed  CAS  Google Scholar 

  35. Mulvenna J, Moertel L, Jones MK, Nawaratna S, Lovas EM et al (2010) Exposed proteins of the Schistosoma japonicum tegument. Int J Parasitol 40:543–554

    Article  PubMed  CAS  Google Scholar 

  36. Jones MK, Gobert GN, Zhang L, Sunderland P, McManus DP (2004) The cytoskeleton and motor proteins of human schistosomes and their roles in surface maintenance and host-parasite interactions. BioEssays 26:752–765

    Article  PubMed  CAS  Google Scholar 

  37. Van Hellemond JJ, Retra K, Brouwers JF, van Balkom BW, Yazdanbakhsh M et al (2006) Functions of the tegument of schistosomes: clues from the proteome and lipidome. Int J Parasitol 36:691–699

    Article  PubMed  Google Scholar 

  38. Mulvenna J, Sripa B, Brindley PJ, Gorman J, Jones MK et al (2010) The secreted and surface proteomes of the adult stage of the carcinogenic human liver fluke Opisthorchis viverrini. Proteomics 10:1063–1078

    PubMed  CAS  Google Scholar 

  39. Knox DP, Smith WD (2001) Vaccination against gastrointestinal nematode parasites of ruminants using gut-expressed antigens. Vet Parasitol 100:21–32

    Article  PubMed  CAS  Google Scholar 

  40. Park TJ, Kang JM, Na BK, Sohn WM (2009) Molecular cloning and characterization of a paramyosin from Clonorchis sinensis. Korean J Parasitol 47:359–367

    Article  PubMed  CAS  Google Scholar 

  41. Mosmann TR, Coffman RL (1989) Heterogeneity of cytokine secretion patterns and functions of helper T cells. Adv Immunol 46:111–147

    Article  PubMed  CAS  Google Scholar 

  42. Snapper CM, Paul WE (1987) Interferon-gamma and B cell stimulatory factor-1 reciprocally regulate Ig isotype production. Science 236:944–947

    Article  PubMed  CAS  Google Scholar 

  43. Hoffmann KF, James SL, Cheever AW, Wynn TA (1999) Studies with double cytokine-deficient mice reveal that highly polarized Th1- and Th2-type cytokine and antibody responses contribute equally to vaccine-induced immunity to Schistosoma mansoni. J Immunol 163:927–938

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by grants from the National Basic Research Program of China (973 program, No. 2010CB530000), and science and technology projects of Guangzhou (10A31021473).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, C., Sun, J., Li, X. et al. Molecular identification and characterization of leucine aminopeptidase 2, an excretory-secretory product of Clonorchis sinensis . Mol Biol Rep 39, 9817–9826 (2012). https://doi.org/10.1007/s11033-012-1848-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-1848-9

Keywords

Navigation