Skip to main content
Log in

The changes of GA level and signaling are involved in the regulation of mesocotyl elongation during blue light mediated de-etiolation in Sorghum bicolor

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

De-etiolation during seedling development is antagonistically regulated by blue light (BL) and gibberellins (GAs). The crosstalk between blue light (BL) and GA metabolism and signaling remains unclear. Using the mutant har1 which is specifically hypersensitive to BL in de-etiolation, the involvement possibility of the GA metabolism, GA signaling in the inhibition of mesocotyl elongation of the sorghum (Sorghum bicolor L. var. R111) seeding under BL was investigated. The inhibition of mesocotyl and cell elongation by BL was restored by application of exogenous GA3 in har1. The endogenous GA3 level correspondingly decreased in har1 mesocotyl especially from 1 to 4 h after BL irradiation. Putative genes of GA metabolism enzymes SbGA20ox, SbGA3ox and SbGA2ox were detected by Real-Time PCR and the results showed that one of the SbGA2ox homologs appeared significantly higher transcript level in har1 than in R111 at 2 h after BL irradiation. Putative homologous genes of DELLAs increased after BL irradiation and were higher in har1 among the three homologs. Remarkable increase of the DELLA expression was observed responding to exogenous paclobutrazol (PAC). Our research provided evidence in monocot sorghum, that the changes of a set of the GA metabolism and signaling genes might be involved in BL-induced inhibition of cell elongation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alabadi D, Gallego-Bartolome J, Orlando L, Garcia-Carcel L, Rubio V, Martinez C, Frigerio M, Iglesias-Pedraz JM, Espinosa A, Deng XW, Blazquez MA (2008) Gibberellins modulate light signaling pathways to prevent Arabidopsis seedling de-etiolation in darkness. Plant J 53(2):324–335. doi:10.1111/j.1365-313X.2007.03346.x

    Article  PubMed  CAS  Google Scholar 

  2. Cashmore AR, Jarillo JA, Wu YJ, Liu D (1999) Cryptochromes: blue light receptors for plants and animals. Science 284(5415):760–765

    Article  PubMed  CAS  Google Scholar 

  3. Briggs WR, Christie JM (2002) Phototropins 1 and 2: versatile plant blue-light receptors. Trends Plant Sci 7(5):204–210. doi:S1360138502022458

    Article  PubMed  CAS  Google Scholar 

  4. Lin C (2002) Blue light receptors and signal transduction. Plant Cell 14(Suppl):S207–S225

    PubMed  CAS  Google Scholar 

  5. Mao J, Zhang YC, Sang Y, Li QH, Yang HQ (2005) From the cover: a role for Arabidopsis cryptochromes and COP1 in the regulation of stomatal opening. Proc Natl Acad Sci USA 102(34):12270–12275. doi:10.1073/pnas.0501011102

    Article  PubMed  CAS  Google Scholar 

  6. Liscum E, Hodgson DW, Campbell TJ (2003) Blue light signaling through the cryptochromes and phototropins. So that’s what the blues is all about. Plant Physiol 133(4):1429–1436. doi:10.1104/pp.103.030601

    Article  PubMed  CAS  Google Scholar 

  7. Cosgrove D (1994) Photomodulation of growth. Photomorphogenesis in plants. Kluwer, Dordrecht

    Google Scholar 

  8. Ahmad M, Cashmore AR (1993) HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature 366(6451):162–166. doi:10.1038/366162a0

    Article  PubMed  CAS  Google Scholar 

  9. Lin C, Yang H, Guo H, Mockler T, Chen J, Cashmore AR (1998) Enhancement of blue-light sensitivity of Arabidopsis seedlings by a blue light receptor cryptochrome 2. Proc Natl Acad Sci USA 95(5):2686–2690

    Article  PubMed  CAS  Google Scholar 

  10. Lin C, Shalitin D (2003) Cryptochrome structure and signal transduction. Annu Rev Plant Biol 54:469–496. doi:10.1146/annurev.arplant.54.110901.160901

    Article  PubMed  CAS  Google Scholar 

  11. Yu X, Sayegh R, Maymon M, Warpeha K, Klejnot J, Yang H, Huang J, Lee J, Kaufman L, Lin C (2009) Formation of nuclear bodies of Arabidopsis CRY2 in response to blue light is associated with its blue light-dependent degradation. Plant Cell 21(1):118–130. doi:10.1105/tpc.108.061663

    Article  PubMed  CAS  Google Scholar 

  12. Liu H, Yu X, Li K, Klejnot J, Yang H, Lisiero D, Lin C (2008) Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis. Science 322(5907):1535–1539. doi:10.1126/science.1163927

    Article  PubMed  CAS  Google Scholar 

  13. Wang H, Ma LG, Li JM, Zhao HY, Deng XW (2001) Direct interaction of Arabidopsis cryptochromes with COP1 in light control development. Science 294(5540):154–158. doi:10.1126/science.1063630

    Article  PubMed  CAS  Google Scholar 

  14. Yang HQ, Tang RH, Cashmore AR (2001) The signaling mechanism of Arabidopsis CRY1 involves direct interaction with COP1. Plant Cell 13(12):2573–2587

    Article  PubMed  CAS  Google Scholar 

  15. Yu X, Klejnot J, Zhao X, Shalitin D, Maymon M, Yang H, Lee J, Liu X, Lopez J, Lin C (2007) Arabidopsis cryptochrome 2 completes its posttranslational life cycle in the nucleus. Plant Cell 19(10):3146–3156. doi:10.1105/tpc.107.053017

    Article  PubMed  CAS  Google Scholar 

  16. Shalitin D, Yang H, Mockler TC, Maymon M, Guo H, Whitelam GC, Lin C (2002) Regulation of Arabidopsis cryptochrome 2 by blue-light-dependent phosphorylation. Nature 417(6890):763–767. doi:10.1038/nature00815

    Article  PubMed  CAS  Google Scholar 

  17. Guo H, Mockler T, Duong H, Lin C (2001) SUB1, an Arabidopsis Ca2+-binding protein involved in cryptochrome and phytochrome coaction. Science 291(5503):487–490. doi:10.1126/science.291.5503.487

    Article  PubMed  CAS  Google Scholar 

  18. Duek PD, Fankhauser C (2003) HFR1, a putative bHLH transcription factor, mediates both phytochrome A and cryptochrome signalling. Plant J 34(6):827–836.

    Article  PubMed  CAS  Google Scholar 

  19. Moller SG, Kim YS, Kunkel T, Chua NH (2003) PP7 is a positive regulator of blue light signaling in Arabidopsis. Plant Cell 15(5):1111–1119

    Article  PubMed  CAS  Google Scholar 

  20. Ward JM, Cufr CA, Denzel MA, Neff MM (2005) The Dof transcription factor OBP3 modulates phytochrome and cryptochrome signaling in Arabidopsis. Plant Cell 17(2):475–485. doi:10.1105/tpc.104.027722

    Article  PubMed  CAS  Google Scholar 

  21. Kang X, Ni M (2006) Arabidopsis SHORT HYPOCOTYL UNDER BLUE1 contains SPX and EXS domains and acts in cryptochrome signaling. Plant Cell 18(4):921–934. doi:10.1105/tpc.105.037879

    Article  PubMed  CAS  Google Scholar 

  22. Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow TY, Hsing YI, Kitano H, Yamaguchi I, Matsuoka M (2005) GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature 437(7059):693–698. doi:10.1038/nature04028

    Article  PubMed  CAS  Google Scholar 

  23. Seo M, Nambara E, Choi G, Yamaguchi S (2009) Interaction of light and hormone signals in germinating seeds. Plant Mol Biol 69(4):463–472. doi:10.1007/s11103-008-9429-y

    Article  PubMed  CAS  Google Scholar 

  24. Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Biol 59:225–251. doi:10.1146/annurev.arplant.59.032607.092804

    Article  PubMed  CAS  Google Scholar 

  25. Hedden P, Phillips AL (2000) Gibberellin metabolism: new insights revealed by the genes. Trends Plant Sci 5(12):523–530. doi:S1360-1385(00)01790-8

    Article  PubMed  CAS  Google Scholar 

  26. Olszewski N, Sun TP, Gubler F (2002) Gibberellin signaling: biosynthesis, catabolism, and response pathways. Plant Cell 14(Suppl):S61–S80

    PubMed  CAS  Google Scholar 

  27. Sponsel VM, Hedden P (2004) Gibberellin biosynthesis and inactivation. In: Plant hormones. Springer, New York. doi:10.1007/978-1-4020-2686-7

  28. Hartweck LM (2008) Gibberellin signaling. Planta 229(1):1–13. doi:10.1007/s00425-008-0830-1

    Article  PubMed  CAS  Google Scholar 

  29. Rieu I, Eriksson S, Powers SJ, Gong F, Griffiths J, Woolley L, Benlloch R, Nilsson O, Thomas SG, Hedden P, Phillips AL (2008) Genetic analysis reveals that C19-GA 2-oxidation is a major gibberellin inactivation pathway in Arabidopsis. Plant Cell 20(9):2420–2436. doi:10.1105/tpc.108.058818

    Article  PubMed  CAS  Google Scholar 

  30. Schwechheimer C, Willige BC (2009) Shedding light on gibberellic acid signalling. Curr Opin Plant Biol 12(1):57–62. doi:10.1016/j.pbi.2008.09.004

    Article  PubMed  CAS  Google Scholar 

  31. Sun TP, Gubler F (2004) Molecular mechanism of gibberellin signaling in plants. Annu Rev Plant Biol 55:197–223. doi:10.1146/annurev.arplant.55.031903.141753

    Article  PubMed  CAS  Google Scholar 

  32. McGinnis KM, Thomas SG, Soule JD, Strader LC, Zale JM, Sun TP, Steber CM (2003) The Arabidopsis SLEEPY1 gene encodes a putative F-box subunit of an SCF E3 ubiquitin ligase. Plant Cell 15(5):1120–1130

    Article  PubMed  CAS  Google Scholar 

  33. Sasaki A, Itoh H, Gomi K, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Jeong DH, An G, Kitano H, Ashikari M, Matsuoka M (2003) Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant. Science 299(5614):1896–1898. doi:10.1126/science.1081077

    Article  PubMed  CAS  Google Scholar 

  34. Schwechheimer C (2008) Understanding gibberellic acid signaling—are we there yet? Curr Opin Plant Biol 11(1):9–15. doi:10.1016/j.pbi.2007.10.011

    Article  PubMed  CAS  Google Scholar 

  35. Ueguchi-Tanaka M, Nakajima M, Katoh E, Ohmiya H, Asano K, Saji S, Hongyu X, Ashikari M, Kitano H, Yamaguchi I, Matsuoka M (2007) Molecular interactions of a soluble gibberellin receptor, GID1, with a rice DELLA protein, SLR1, and gibberellin. Plant Cell 19(7):2140–2155. doi:10.1105/tpc.106.043729

    Article  PubMed  CAS  Google Scholar 

  36. Hirano K, Ueguchi-Tanaka M, Matsuoka M (2008) GID1-mediated gibberellin signaling in plants. Trends Plant Sci 13(4):192–199. doi:10.1016/j.tplants.2008.02.005

    Article  PubMed  CAS  Google Scholar 

  37. Folta KM, Pontin MA, Karlin-Neumann G, Bottini R, Spalding EP (2003) Genomic and physiological studies of early cryptochrome 1 action demonstrate roles for auxin and gibberellin in the control of hypocotyl growth by blue light. Plant J 36(2):203–214

    Article  PubMed  CAS  Google Scholar 

  38. Achard P, Liao L, Jiang C, Desnos T, Bartlett J, Fu X, Harberd NP (2007) DELLAs contribute to plant photomorphogenesis. Plant Physiol 143(3):1163–1172. doi:10.1104/pp.106.092254

    Article  PubMed  CAS  Google Scholar 

  39. Feng S, Martinez C, Gusmaroli G, Wang Y, Zhou J, Wang F, Chen L, Yu L, Iglesias-Pedraz JM, Kircher S, Schafer E, Fu X, Fan LM, Deng XW (2008) Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature 451(7177):475–479

    Article  PubMed  CAS  Google Scholar 

  40. de Lucas M, Daviere JM, Rodriguez-Falcon M, Pontin M, Iglesias-Pedraz JM, Lorrain S, Fankhauser C, Blazquez MA, Titarenko E, Prat S (2008) A molecular framework for light and gibberellin control of cell elongation. Nature 451(7177):480–484. doi:10.1038/nature06520

    Article  PubMed  Google Scholar 

  41. Toward sequencing the sorghum genome. A U.S. National Science Foundation-sponsored Workshop Report (2005) Plant Physiol 138 (4):1898–1902. doi:10.1104/pp.105.065136

    Google Scholar 

  42. Vermerris WSA, Ejeta G, Mosier NS, Ladisch MR, Carpita NC (2007) Molecular breeding to enhance ethanol production from corn and sorghum stover. Crop Sci 47(3):142–153

    Article  Google Scholar 

  43. Wang X, Gowik U, Tang H, Bowers JE, Westhoff P, Paterson AH (2009) Comparative genomic analysis of C4 photosynthetic pathway evolution in grasses. Genome Biol 10(6):R68. doi:10.1186/gb-2009-10-6-r68

    Article  PubMed  Google Scholar 

  44. Pao CI, Morgan PW (1986) Genetic regulation of development in Sorghum bicolor: II. Effect of the ma R3 Allele Mimicked by GA3. Plant Physiol 82(2):581–584

    Article  PubMed  CAS  Google Scholar 

  45. Gao SJ, Xie XZ, Chen ZP, Huang ZG, Zhao Q, Wang XJ (2009) Blue light-mediated de-etiolation in sorghum mutant har1. Chin Bull Bot 44(1):69–78

    CAS  Google Scholar 

  46. Hoagland D (1920) Optimum nutrient solutions for plants. Science 52(1354):562–564. doi:10.1126/science.52.1354.562

    Article  PubMed  CAS  Google Scholar 

  47. Lozano-Baena MD, Prats E, Moreno MT, Rubiales D, Perez-de-Luque A (2007) Medicago truncatula as a model for nonhost resistance in legume–parasitic plant interactions. Plant Physiol 145(2):437–449. doi:10.1104/pp.107.097089

    Article  PubMed  CAS  Google Scholar 

  48. Symons GM, Reid JB (2003) Hormone levels and response during de-etiolation in pea. Planta 216(3):422–431. doi:10.1007/s00425-002-0860-z

    PubMed  CAS  Google Scholar 

  49. Jager CE, Symons GM, Ross JJ, Smith JJ, Reid JB (2005) The brassinosteroid growth response in pea is not mediated by changes in gibberellin content. Planta 221(1):141–148. doi:10.1007/s00425-004-1454-8

    Article  PubMed  CAS  Google Scholar 

  50. Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5(2):150–163

    Article  PubMed  CAS  Google Scholar 

  51. Reid JB, Botwright NA, Smith JJ, O’Neill DP, Kerckhoffs LH (2002) Control of gibberellin levels and gene expression during de-etiolation in pea. Plant Physiol 128(2):734–741

    Article  PubMed  CAS  Google Scholar 

  52. Foo E, Ross JJ, Davies NW, Reid JB, Weller JL (2006) A role for ethylene in the phytochrome-mediated control of vegetative development. Plant J 46(6):911–921

    Article  PubMed  CAS  Google Scholar 

  53. Zhao X, Yu X, Foo E, Symons GM, Lopez J, Bendehakkalu KT, Xiang J, Weller JL, Liu X, Reid JB, Lin C (2007) A study of gibberellin homeostasis and cryptochrome-mediated blue light inhibition of hypocotyl elongation. Plant Physiol 145(1):106–118. doi:10.1104/pp.107.099838

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Key Technology R & D Program in China (2007BAD59B06) and the National Natural Science Foundation of China (No. 90917011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojing Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, S., Xie, X., Yang, S. et al. The changes of GA level and signaling are involved in the regulation of mesocotyl elongation during blue light mediated de-etiolation in Sorghum bicolor . Mol Biol Rep 39, 4091–4100 (2012). https://doi.org/10.1007/s11033-011-1191-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-1191-6

Keywords

Navigation