Skip to main content
Log in

Identification and characterization of class I chitinase in Panax ginseng C. A. Meyer

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The role of plant chitinases in protecting plants against a variety of fungal pathogens is well established. In the present study, a cDNA clone containing a class I chitinase (Chi-1) gene, designated as PgChi-1, has been isolated from the oriental medicinal plant Panax ginseng. PgChi-1 is predicted to encode a protein of 34.9 kDa consisting of 323 amino acid residues. PgChi-1 was found to be expressed constitutively in all of the studied organs of ginseng plant. Under various abiotic stress treatments including Cu, H2O2, mannitol, SA, JA, and NaCl, the expression of PgChi-1 in plantlets and hairy roots increased significantly compared to the control. When different parts of root were analyzed, maximum level was observed in taproot. In addition, levels of PgChi-1 expression were compared between healthy root and fungal, bacterial, and nematode infected root. Significant increase of PgChi-1 was noticed in pathogen infected roots than healthy roots. This study revealed that PgChi-1 may protect the P. ginseng under both biotic and abiotic stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

SA:

Salicylic acid

JA:

Jasmonic acid

H2O2 :

Hydrogen peroxide

NaCl:

Sodium chloride (salt)

CuSO4 :

Copper sulfate

ORF:

Open reading frame

RT-PCR:

Reverse transcriptase-polymerase chain reaction

References

  1. Rakwal R, Yang G, Komatsu S (2004) Chitinase induced by jasmonic acid, methyl jasmonate, ethylene and protein phosphatase inhibitors in rice. Mol Biol Rep 31:113–119

    Article  CAS  PubMed  Google Scholar 

  2. Duo-Chuan L (2006) Review of fungal chitinases. Mycopathologia 161:345–360

    Article  PubMed  Google Scholar 

  3. Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280(Pt 2):309–316

    CAS  PubMed  Google Scholar 

  4. Yokoyama R, Nishitani K (2004) Genomic basis for cell-wall diversity in plants. A comparative approach to gene families in rice and Arabidopsis. Plant Cell Physiol 45:1111–1121

    Article  CAS  PubMed  Google Scholar 

  5. Geurts R, Franssen H (1996) Signal transduction in Rhizobium-induced nodule formation. Plant Physiol 112:447–453

    Article  CAS  PubMed  Google Scholar 

  6. Kasprzewska A (2003) Plant chitinases-regulation and function. Cell Mol Biol Lett 8:809–824

    CAS  PubMed  Google Scholar 

  7. Bravo JM, Campo S, Murillo I, Coca M, San Segundo B (2003) Fungus- and wound-induced accumulation of mRNA containing a class II chitinase of the pathogenesis-related protein 4 (PR-4) family of maize. Plant Mol Biol 52:745–759

    Article  CAS  PubMed  Google Scholar 

  8. Lorito M, Woo SL, Garcia I, Colucci G, Harman GE, Pintor-Toro JA, Filippone E, Muccifora S, Lawrence CB, Zoina A, Tuzun S, Scala F (1998) Genes from mycoparasitic fungi as a source for improving plant resistance to fungal pathogens. Proc Natl Acad Sci USA 95:7860–7865

    Article  CAS  PubMed  Google Scholar 

  9. Bolar JP, Norelli JL, Harman GE, Brown SK, Aldwinckle HS (2001) Synergistic activity of endochitinase and exochitinase from Trichoderma atroviride (T. harzianum) against the pathogenic fungus (Venturia inaequalis) in transgenic apple plants. Transgenic Res 10:533–543

    Article  CAS  PubMed  Google Scholar 

  10. Shoresh M, Harman GE (2008) Genome-wide identification, expression and chromosomal location of the genes encoding chitinolytic enzymes in Zea mays. Mol Genet Genomics 280:173–185

    Article  CAS  PubMed  Google Scholar 

  11. Samac DA, Shah DM (1994) Effect of chitinase antisense RNA expression on disease susceptibility of Arabidopsis plants. Plant Mol Biol 25:587–596

    Article  CAS  PubMed  Google Scholar 

  12. Baldan B, Guzzo F, Filippini F, Gasparian M, LoSchiavo F, Vitale A, de Vries SC, Mariani P, Terzi M (1997) The secretory nature of the lesion of carrot cell variant ts11, rescuable by endochitinase. Planta 203:381–389

    Article  CAS  PubMed  Google Scholar 

  13. Morris PC, Kumar A, Bowles DJ, Cuming AC (1990) Osmotic stress and abscisic acid induce expression of the wheat Em genes. Eur J Biochem 190:625–630

    Article  CAS  PubMed  Google Scholar 

  14. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  Google Scholar 

  15. Geourjon C, Deleage G (1995) SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci 11:681–684

    CAS  PubMed  Google Scholar 

  16. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JohnM (ed) The proteomics protocols handbook. Humana Press, Totowa, New Jersey, pp 571–607

    Chapter  Google Scholar 

  17. Kim YJ, Shim JS, Krishna PR, Kim SY, In JG, Kim MK, Yang DC (2008) Isolation and characterization of a glutaredoxin gene from Panax ginseng C.A. Meyer. Plant Mol Biol Rep 26:335–349

    Article  CAS  Google Scholar 

  18. Ahn YJ, Ohh SH, Kim HJ, Lee SK (1983) Effect of root-knot nematode infection on ginseng growth of inorganic nutrients in ginseng roots. J Ginseng Res 7:37–43

    Google Scholar 

  19. Cho HS, Jeon HJ, Do GR, Cho DH, Yu YH (2008) Mycological characteristics of Botrytis cinerea causing gray mold on ginseng in Korea. J Ginseng Res 32:26–32

    Article  Google Scholar 

  20. Kim MK, Pulla RK, Kim SY, Yi TH, Soung NK, Yang DC (2008) Sanguibacter soli sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 58:538–541

    Article  CAS  PubMed  Google Scholar 

  21. Pulla RK, Kim YJ, Kim MK, Senthil KS, In JG, Yang DC (2008) Isolation of a novel dehydrin gene from Codonopsis lanceolata and analysis of its response to abiotic stresses. BMB Rep 41:338–343

    CAS  PubMed  Google Scholar 

  22. Libantova J, Kamarainen T, Moravcikova J, Matusikova I, Salaj J (2009) Detection of chitinolytic enzymes with different substrate specificity in tissues of intact sundew (Drosera rotundifolia L.): chitinases in sundew tissues. Mol Biol Rep 36(5):851–856

    Article  CAS  PubMed  Google Scholar 

  23. Hamel F, Bellemare G (1995) Characterization of a class 1 chitinase gene and of wound-inducible root and flower-specific chitinase expression in Brassica napus. Biochim Biophys Acta 1263:212–220

    PubMed  Google Scholar 

  24. Sels J, Mathys J, De Coninck BM, Cammue BP, De Bolle MF (2008) Plant pathogenesis-related (PR) proteins: a focus on PR peptides. Plant Physiol Biochem 46:941–950

    Article  CAS  PubMed  Google Scholar 

  25. Bekesiova B, Hraska S, Libantova J, Moravcikova J, Matusikova I (2008) Heavy-metal stress induced accumulation of chitinase isoforms in plants. Mol Biol Rep 35:579–588

    Article  CAS  PubMed  Google Scholar 

  26. Leung J, Giraudat J (1998) Abscisic acid signal transduction. Annu Rev Plant Physiol Plant Mol Biol 49:199–222

    Article  CAS  PubMed  Google Scholar 

  27. Mauch-Mani B, Mauch F (2005) The role of abscisic acid in plant-pathogen interactions. Curr Opin Plant Biol 8:409–414

    Article  CAS  PubMed  Google Scholar 

  28. Chen RD, Yu LX, Greer AF, Cheriti H, Tabaeizadeh Z (1994) Isolation of an osmotic stress- and abscisic acid-induced gene encoding an acidic endochitinase from Lycopersicon chilense. Mol Gen Genet 245:195–202

    Article  CAS  PubMed  Google Scholar 

  29. Gechev TS, Minkov IN, Hille J (2005) Hydrogen peroxide-induced cell death in Arabidopsis: transcriptional and mutant analysis reveals a role of an oxoglutarate-dependent dioxygenase gene in the cell death process. IUBMB Life 57:181–188

    Article  CAS  PubMed  Google Scholar 

  30. Mellersh DG, Foulds IV, Higgins VJ, Heath MC (2002) H2O2 plays different roles in determining penetration failure in three diverse plant-fungal interactions. Plant J 29:257–268

    Article  CAS  PubMed  Google Scholar 

  31. Bolwell GP, Bindschedler LV, Blee KA, Butt VS, Davies DR, Gardner SL, Gerrish C, Minibayeva F (2002) The apoplastic oxidative burst in response to biotic stress in plants: a three-component system. J Exp Bot 53:1367–1376

    Article  CAS  PubMed  Google Scholar 

  32. Browse J, Howe GA (2008) New weapons and a rapid response against insect attack. Plant Physiol 146:832–838

    Article  CAS  PubMed  Google Scholar 

  33. Fobert PR, Despres C (2005) Redox control of systemic acquired resistance. Curr Opin Plant Biol 8:378–382

    Article  CAS  PubMed  Google Scholar 

  34. Durner J, Klessig DF (1996) Salicylic acid is a modulator of tobacco and mammalian catalases. J Biol Chem 271:28492–28501

    Article  CAS  PubMed  Google Scholar 

  35. Yusuf M, Hasan SA, Ali B, Hayat S, Fariduddin Q, Ahmad A (2008) Effect of salicylic acid on salinity-induced changes in Brassica juncea. J Integr Plant Biol 50:1096–1102

    Article  CAS  PubMed  Google Scholar 

  36. Schutzendubel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    Article  CAS  PubMed  Google Scholar 

  37. Fan J, Wang H, Feng D, Liu B, Liu H, Wang J (2007) Molecular characterization of plantain class 1 chitinase gene and its expression in response to infection by Gloeosporium musarum Cke and Massee and other abiotic stimuli. J Biochem 142:561–570

    Article  CAS  PubMed  Google Scholar 

  38. Sahai AS, Manocha MS (1993) Chitinases of fungi and plants: their in morphogenesis and host-parasite involvement interaction. FEMS Mic bioRev 11:317–338

    Article  CAS  Google Scholar 

  39. Metraux JP, Boiler T (1986) Local and systemic induction of chitinase of cucumber plants in response to viral, bacterial, and fungal infections. Physiol Mol Plant Pathol 28:161–169

    Article  CAS  Google Scholar 

  40. Chen WP, Punja ZK (2002) Agrobacterium-mediated transformation of American ginseng with a rice chitinase gene. Plant Cell Rep 20:1039–1045

    Article  CAS  Google Scholar 

  41. Epple P, Apel K, Bohlmann H (1997) Overexpression of an endogenous thionin enhances resistance of Arabidopsis against Fusarium oxysporum. Plant Cell 9:509–520

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by KGCMVP for Technology Development Program of Agriculture and Forestry, Ministry of Agriculture and Forestry, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deok-Chun Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11033_2010_82_MOESM1_ESM.pdf

Supplementary Fig. 1 Nucleotide and deduced amino acid sequences of a class I chitinase cDNA isolated from root of Panax ginseng. The deduced amino acid sequence is shown in single letter code below the nucleotide sequence. Numbers to the right and left refer to numbers of nucleotides. The asterisk denotes the translation stop signal. Poly A signal (AATAAA) was marked in box. Amino acids underlined in single and double lines are the chitinases family 19 signature 1 and 2 respectively. (PDF 47 kb)

11033_2010_82_MOESM2_ESM.pdf

Supplementary Fig. 2 A phylogenetic tree based on chitinase amino acid sequence, showing the phylogenetic relationship between PgChi-1 and other plant’s Chitinases. The tree was constructed using the Clustal X method (Neighbor-joining) and a bar represents 0.05 substitutions per amino acid position. (PDF 15 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pulla, R.K., Lee, O.R., In, JG. et al. Identification and characterization of class I chitinase in Panax ginseng C. A. Meyer. Mol Biol Rep 38, 95–102 (2011). https://doi.org/10.1007/s11033-010-0082-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0082-6

Keywords

Navigation