Skip to main content
Log in

Identification and characterization of spermidine synthase gene from Panax ginseng

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

A full length spermidine synthase (PgSPD) cDNA was isolated and characterized from the root of Panax ginseng C. A. Meyer. The cDNA was 1,188 nucleotides long and had an open reading frame of 1,002 bp with a deduced amino acid sequence of 333 residues. The calculated molecular mass of the matured protein is approximately 36.38 kDa with a predicated isoelectric point of 5.02. A GenBank BlastX search revealed that the deduced amino acid of PgSPD shares a high degree homology with the Lotus japonicas (78.5% identity, 84% similarity). In the present study we analyzed the expression of PgSPD under various environmental stresses at different time points using real time-PCR. We also determined polyamine content in adventitious roots under salt and chilling stress using HPLC. Our results reveal that PgSPD is slightly induced by mannitol and CuSO4. Otherwise, salt, chilling, abscisic acid and jasmonic acid triggered a significant induction (more than tenfold) of PgSPD within 12–24 h post-treatment, especially; PgSPD was prominently induced by salt (41.5-fold). These results suggest that the transcript of Spd gene involved in PA biosynthesis shows different profiles of expression in response to environmental stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

Spd:

Spermidine synthase

JA:

Jasmonic acid

ORF:

Open reading frame

RT-PCR:

Reverse transcriptase-polymerase chain reaction

References

  1. Evans PT, Malmberg RL (1989) Do polyamines have roles in plant development? Ann Rev Plant Physiol Mol Biol 40:235–269

    CAS  Google Scholar 

  2. Flores HE, Filner P (1985) Metabolic relationships of putrescine GABA and alkaloids in cell and root cultures. In: Newman KH, Barz W, Reinhard E (eds) Primary and secondary metabolism of plant cell cultures. Springer, New York, pp 37–42

    Google Scholar 

  3. He L, Nada K, Kasukabe Y, Tachiban S (2002) Enhanced susceptibility of photosynthesis to low-temperature photoinhibition due to interruption of chill-induced increase of S-adenosylmethionine decarboxylase activity in leaves of spinach (Spinacia oleracea L.). Plant Cell Physiol 43:196–206

    Article  CAS  PubMed  Google Scholar 

  4. Shen WY, Nada K, Tachibana S (2000) Involvement of polyamines in the chilling tolerance of cucumber cultivars. Plant Physiol 124:431–439

    Article  CAS  PubMed  Google Scholar 

  5. Krishnamurthy R, Bhagwat KA (1989) Polyamines as modulators of salt tolerance in rice cultivars. Plant Physiol 91:500–504

    Article  CAS  PubMed  Google Scholar 

  6. Besford RT, Richardson CM, Campos JL, Tiburcio AF (1993) Effect of polyamines on stabilization of molecular complexes in thylakoid membranes of osmotically stressed oat leaves. Plant 189:201–206

    Article  CAS  Google Scholar 

  7. Nada K, Iwatani E, Doi T, Tachibana S (2004) Effect of putrescine pretreatment to roots on growth and lactate metabolism in the roots of tomato (Lycopersicon esculentum Mill.) under root-zone hypoxia. J Japan Soc Hort Sci 74 (in press)

  8. Kurepa J, Smalle J, Montagu MV, Inzé D (1998) Polyamines and paraquat toxicity in Arabidopsis thaliana. Plant Cell Physiol 39:987–992

    CAS  PubMed  Google Scholar 

  9. Hanzawa Y, Imai A, Michael AJ, Komeda Y, Takahashi T (2002) Characterization of the spermidine synthase-related gene family in Arabidopsis thaliana. FEBS Lett 527:176–180

    Article  CAS  PubMed  Google Scholar 

  10. Alabadi D, Carbonell J (1999) Molecular cloning and characterization of a tomato spermidine synthase cDNA (accession no. AJ006414). Plant Physiol 120:935

    Google Scholar 

  11. Wang Q, Yuan G, Sun H, Zhao P, Liu Y, Guo D (2005) Molecular cloning and expression analysis of spermidine synthase gene during sex reversal induced by Ethrel in cucumber (Cucumis sativus L.). Plant Sci 169:768–775

    Article  CAS  Google Scholar 

  12. Jimenez-Bremont JF, Ruiz OA, Rodriguez-Kessler M (2007) Modulation of spermidine and spermine levels in maize seedlings subjected to long-term salt stress. Plant physiol Bioch 45:812–821

    Article  CAS  Google Scholar 

  13. Morris PC, Kumar A, Bowles DJ, Cuming AC (1990) Osmotic stress and abscisic acid regulate the expression of the Em gene of wheat. Eur.J.Biochem 190:625–630

    Article  CAS  PubMed  Google Scholar 

  14. McGuffin LJ, Bryson K, Jones DT (2000) The PSIPRED protein structure prediction server. Bioinformatics 16:404–405

    Article  CAS  PubMed  Google Scholar 

  15. Lombard V, Camon EB, Parkinson HE, Hingamp P, Stoesser G, Redaschi N (2002) EMBL-Align: a new public nucleotide and amino acid multiple sequence alignment database. Bioinformatics 18:763–764

    Article  CAS  PubMed  Google Scholar 

  16. Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815

    Article  CAS  PubMed  Google Scholar 

  17. Holm L, Park J (2000) DaliLite workbench for protein structure comparison. Bioinformatics 16:566–567

    Article  CAS  PubMed  Google Scholar 

  18. Laskowski RA, Macarthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the steroechemical quality of protein structures. J Appl Cryst 26(2):283–291

    Article  CAS  Google Scholar 

  19. DeLano WL (2002) The PyMOL molecular graphics system. DeLano Scientific, San Carlos, CA

    Google Scholar 

  20. Parvin S, Pulla RK, Shim JS, Kim YJ, Jung DY, Yang DC (2008) Isolation and characterization of cinnamoyl-CoA reductase gene from Panax ginseng C. A. Meyer. J Ginseng Res 32(3):232–237

    Google Scholar 

  21. Marce M, Brown DS, Capell T, Figueras X, Tiburcio AF (1995) Rapid high performance liquid chromatographic method for the quantitation of polyaminesas their dansyl derivatives: application to plant and animal tissues. J. Chromatogr. B 666:329–335

    Article  CAS  Google Scholar 

  22. Bouchereau A, Aziz A, Larher F, Martin-Tanguy J (1999) Polyamines and environmental challenges: recent development. Plant Sci 140:103–125

    Article  CAS  Google Scholar 

  23. Hofmann K, Bucher P, Falquet L, Bairoch A (1999) The PROSITE database, its status in 1999. Nucleic Acids Res 27:215–219

    Article  CAS  PubMed  Google Scholar 

  24. Korolev S, Ikeguchi Y, Sharina T, Beasley S, Arrowsmith C, Edwards A, Joachimiak A, Pegg AE, Savchenko A (2002) The crystal structure of spermidine synthase with a multisubstrate adduct inhibitor. Nat Struct Biol 9:27–31

    Article  CAS  PubMed  Google Scholar 

  25. Urano K, Yoshiba Y, Nanjo T, Igarashi Y, Seki M, Sekiguchi F, Yamaguchi-hinozaki K, Shinozaki K (2003) Characterization of Arabidopsis genes involved in biosynthesis of polyamines in abiotic stress responses and developmental stages. Plant Cell Environ 26:1917–1926

    Article  CAS  Google Scholar 

  26. Duan J, Li J, Guo S, Kang Y (2008) Exogenous spermidine affects polyamine metabolism in salinity-stressed Cucumis sativus roots and enhances short-term salinity tolerance. J plant physiol 165:1620–1635

    Article  CAS  PubMed  Google Scholar 

  27. Wen XP, Pang XM, Masayuki K, Inoue H, Hao YJ, Honda C, Moriguchi T (2008) Overexpression of the apple spermidine synthase gene in pear confers multiple abiotic stress tolerance by altering polyamine titers. Transgenic Res 17:251–263

    Article  CAS  PubMed  Google Scholar 

  28. Verma S, Mishra SN (2005) Putrescine alleviation of growth in salt stressed Brassica juncea by inducing antioxidative defense system. J Plant Physiol 162:669–677

    Article  CAS  PubMed  Google Scholar 

  29. Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349

    Article  CAS  PubMed  Google Scholar 

  30. Legocka J, Kluk A (2005) Effect of salt and osmotic stress on changes in polyamine content and arginine decarboxylase activity in Lupinus luteus seedlings. J Plant Physiol 162:662–668

    Article  CAS  PubMed  Google Scholar 

  31. Kasukabe Y, He L, Nada K, Misawa S, Ihara I, Tachibana S (2004) Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiol 45(6):712–722

    Article  CAS  PubMed  Google Scholar 

  32. Roy P, Niyogi K, SenGupta DN, Ghosh B (2005) Spermidine treatment to rice seedlings recovers salinity stress induced damage of plasma membrane and PM-bound H + -ATPase in salt-tolerant and salt-sensitive rice cultivars. Plant Sci 168:583–591

    Article  CAS  Google Scholar 

  33. Chattopadhayay MK, Tiwari BS, Chattopadhyay G, Bose A, Sengupta DN, Ghosh B (2002) Protective role of exogenous polyamines on salinity-stressed rice (Oryza sativa) plants. Physiol Plant 116:192–199

    Article  CAS  PubMed  Google Scholar 

  34. Roussos PA, Pontikis CA (2007) Changes of free, soluble conjugated and bound polyamine titers of jojoba explants under sodium chloride salinity in vitro. J Plant Physiol 164:895–903

    Article  CAS  PubMed  Google Scholar 

  35. Yamaguchi K, Takahashi Y, Berberich T, Imai A, Takahashi T, Michael AJ (2007) A protective role for the polyamine spermine against drought stress in Arabidopsis. Biochem Biophys Res Co 352:486–490

    Article  CAS  Google Scholar 

  36. Shabala S, Cuin TA, Pottosin I (2007) Polyamines prevent NaCl induced K + efflux from pea meso phyll by blocking non selective cation channels. FEBS Lett 581:1993–1999

    Article  CAS  PubMed  Google Scholar 

  37. Zapata PJ, Serrano M, Pretel MT, Amoros A, Botella MA (2004) Polyamines and ethylene changes during germination of different plant species under salinity. Plant Sci 167:781–788

    Article  CAS  Google Scholar 

  38. Raison JK, Lyons JM (1970) Oxidative activity of mitochondria isolated from plant tissues sensitive and resistant to chilling injury. Plant Physiol 45:386–389

    Article  PubMed  Google Scholar 

  39. Flores HE, Filner P (1985) Metabolic relationships of putrescine GABA and alkaloids in cell and root cultures. In: Newman KH, Barz W, Reinhard E (eds) Primary and secondary metabolism of plant cell cultures. Springer, New York, pp 37–42

    Google Scholar 

  40. Hachiya A, Yamamoto Y, Matsumoto H (1996) Inhibitory effect of phenylpropanoids on aluminium toxicity in cultured tobacco cells. Plant Cell Physiol 37:53

    Google Scholar 

  41. Tonon G, Kevers C, Faivre-Rampant O, Graziani M, Gaspar T (2004) Effect of NaCl and mannitol iso-osmotic stresses on proline and freepolyamine levels in embryogenic Fraxinus angustifolia callus. J PlantPhysiol 161:701–708

    CAS  Google Scholar 

  42. Fornazier RF, Ferreira RR, Vitoria AP, Molina SMG, Lea PJ, Azevedo RA (2002) Effects of cadmium on antioxidant enzyme activities in sugarcane. Biol Plant 45:91–97

    Article  CAS  Google Scholar 

  43. Groppa MD, Tomaro ML, Benavides MP (2001) Polyamines as protectors against cadmium or copper-induced oxidative damage in sunflower leaf discs. Plant Sci 161:481–488

    Article  CAS  Google Scholar 

  44. Jouve L, Hoffmann L, Hausman JF (2004) Polyamine, carbohydrate, and proline content changes during salt stress exposure of Aspen (Populus tremula L.): involvement of oxidation and osmoregulation metabolism. Plant boil 6:74–80

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by KGCMVP for Technology Development Program of Agriculture and Forestry, Ministry of Agriculture and Forestry, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deok-Chun Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parvin, S., Kim, YJ., Pulla, R.K. et al. Identification and characterization of spermidine synthase gene from Panax ginseng . Mol Biol Rep 37, 923 (2010). https://doi.org/10.1007/s11033-009-9725-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-009-9725-x

Keywords

Navigation