Skip to main content

Advertisement

Log in

The transduction of His-TAT-p53 fusion protein into the human osteogenic sarcoma cell line (Saos-2) and its influence on cell cycle arrest and apoptosis

  • Original Paper
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The p53 gene is a tumor suppressor gene. It encodes a nuclear phosphoprotein p53 involved in the regulation of cell cycle arrest and apoptosis to maintain the genomic integrity of the cell. As mutations of p53 gene are found in most human cancers, p53 protein becomes a hot target in the research of anticancer therapy. In the present study, an 11-amino acid domain of TAT protein which has been demonstrated to be able to transduce across cell membranes was fused with p53. The result revealed that the fusion protein His-TAT-p53 accumulated in the nucleus and inhibited the growth of the Saos-2 cells. Besides apoptosis, an increased percentage of G2 phase suggested that the transduction of His-TAT-p53 into cells might be associated with a G2 arrest of cell cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Baker SJ, Fearon ER, Nigro JM et al (1989) Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science 244:217–221

    Article  PubMed  CAS  Google Scholar 

  2. Greenblatt MS, Bennett WP, Hollstein MC et al (1994) Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res 54:4855–4878

    PubMed  CAS  Google Scholar 

  3. Arnold JL (1997) p53, the Cellular Gatekeeper for Growth and Division. Cell 88:323–331

    Article  Google Scholar 

  4. Kussie PH, Gorina S, Marechal V et al (1996) Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274:948–953

    Article  PubMed  CAS  Google Scholar 

  5. Vogelstein B, Lane DP, Levine AJ (2000) Surfing the p53 network. Nature 408:307–310

    Article  PubMed  CAS  Google Scholar 

  6. Wahl GM, Carr AM (2001) The evolution of diverse biological responses to DNA damage: insights from yeast and p53. Nat Cell Biol 3:E277–E286

    Article  PubMed  CAS  Google Scholar 

  7. Lin T, Chao C, Saito S et al (2005) p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nat Cell Biol 7:165–171

    Article  PubMed  CAS  Google Scholar 

  8. May P, May E (1999) Twenty years of p53 research: structural and functional aspects of the p53 protein. Oncogene 18:7621–7636

    Article  PubMed  CAS  Google Scholar 

  9. Seruca R, David L, Holm R et al (1992). P53 mutations in gastric carcinomas. Br J Cancer 65:708–710

    PubMed  CAS  Google Scholar 

  10. Bosari S, Viale G (1995) The clinical significance of p53 aberrations in human tumours. Virchows Arch 427:229–241

    Article  PubMed  CAS  Google Scholar 

  11. Pellegata NS, Ranzani G.N (1996) The significance of p53 mutations in human caners. Eur J Histochem 40:273–282

    PubMed  CAS  Google Scholar 

  12. Hollstein M, Sidransky D, Vogelstein B et al (1991) p53 mutations in human cancers. Science 253:49–53

    Article  PubMed  CAS  Google Scholar 

  13. Bykov VJ, Selivanova G., Wiman KG (2003) Small molecules that reactivate mutant p53. Eur J Cancer 39:1828–1834

    Article  PubMed  CAS  Google Scholar 

  14. Yuzuru H, Jun-ichi A, Jun M et al (2002) Adenoviral p53 gene therapy in head and neck squamous cell carcinoma cell lines. Oncol Rep 9:1233–1236

    Google Scholar 

  15. Blagosklonny MV, el-Deiry WS (1996) In vitro evaluation of a p53-expressing adenovirus as an anti-cancer drug. Int J Cancer 67:386–392

    Article  PubMed  CAS  Google Scholar 

  16. Green M, Loewenstein PM (1988) Autonomous functional domains of chemically synthesized human immuneodeficiency virus Tat transactivator protein. Cell 55:1179–1188

    Article  PubMed  CAS  Google Scholar 

  17. Frankel AD, Pabo CO (1988) Cellular uptake of the Tat protein from human immunodeficiency virus. Cell 55:1189–1193

    Article  PubMed  CAS  Google Scholar 

  18. Fawell S, Seery J, Daikh Y, et al (1994) Tat-mediated delivery of heterologous proteins into cells. Proc Natl Acad Sci USA 91:664–668

    Article  PubMed  CAS  Google Scholar 

  19. Hikaru N, Adamina M Vocero-Akbani, Eric LS et al (1998) Transduction of full-length TAT fusion proteins into mammalian cells: TAT-P27Kip1 induces cell migration. Nat Med 4:1449–1452

    Article  Google Scholar 

  20. Park J, Ryu J, Kim KA et al (2002) Mutational analysis of a human immunodeficiency virus type1 Tat protein transduction domain which is required for delivery of an exogenous protein into mammalian cells. J Gen Virol 83:1173–1181

    PubMed  CAS  Google Scholar 

  21. Li HJ, Jae HB, Won SE et al (2001) Transduction of human catalase mediated by an HIV-1 TAT protein basic domain and arginine-rich peptides into mammalian cells. Free Radic Biol Med 31:1509–1519

    Article  Google Scholar 

  22. Kwon HY, Eum WS, Jang HW et al (2000) Transduction of Cu, Zn-superoxide dismutase mediated by an HIV-1 Tat protein basic domain into mammaliam cells. FEBS Lett 485:163–167

    Article  PubMed  CAS  Google Scholar 

  23. Stefan B, Silke H, Johannes B (2002) Refolding and structural characterization of the human p53 tumor suppressor protein. Biophys Chem 96:243–257

    Article  Google Scholar 

  24. Jiyoon R, Hak JL, Kyeong-Ae K et al (2004) Intracellular delivery of p53 fused to the basic domain of HIV-1 Tat. Mol Cells 17:353–359

    Google Scholar 

  25. Veronique AJS, Rob K, Tea V et al (2000) p21 Inhibits Thr161 phosphorylation of Cdc2 to enforce the G2 DNA damage checkpoint. J Biol Chem 275:30638–30643

    Article  Google Scholar 

  26. Ricardo LP, Dagmar K, Melina MR et al (2004) Delivery of proteins and peptides into live cells by means of protein Transduction domains: potential application to organ and cell transplantation. Transplantation 77:1627–1631

    Article  Google Scholar 

  27. Brooks H, Lebleu B, Vives E (2005) Tat peptide-mediated cellular delivery: back to basics. Adv Drug Deliv Rev 57:559–577

    Article  PubMed  CAS  Google Scholar 

  28. Kramer SD, Wunderli-Allenspach H (2003) No entry for TAT (44–57) into liposomes and intact MDCK cells: novel approach to study membrane permeation of cell-penetrating peptides. Biochim Biophys Acta 1609:161–169

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Zhang Xin (The Chinese National Human Genome Center, Shanghai.) for providing pcDNA3.1-p53 and the human osteogenic sarcoma cell line (Saos-2). We gratefully acknowledge the technical contributions of the colleagues in the Biochemistry Institute of East China University of Science and Technology. The work was supported by the grant from the Ministry of Science and Technology (2004AA2Z3801), P. R. China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yushu Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, L., Ma, Y., Wang, J. et al. The transduction of His-TAT-p53 fusion protein into the human osteogenic sarcoma cell line (Saos-2) and its influence on cell cycle arrest and apoptosis. Mol Biol Rep 35, 1–8 (2008). https://doi.org/10.1007/s11033-006-9044-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-006-9044-4

Keywords

Navigation