Skip to main content
Log in

Genetic improvement of panicle-erectness japonica rice toward both yield and eating and cooking quality

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

The panicle erectness (PE) japonica cultivars have been widely planted in China. However, the relatively low yield level per plant and inferior eating and cooking quality of PE japonica cultivars are needed to improve further. In present study, a typical PE japonica cultivar, Nanjing 46, was selected as target for improving yield and grain quality by the way of introgression of Gn1a, qPC-1, and sd1 allele conferring grain number, grain protein content (GPC), and plant height, respectively. We obtained the improved lines containing Gn1a, qPC-1-sd1, and qPC-1-sd1-Gn1a through consecutive backcrossing with the help of gene-tagged markers. Agronomic and quality trait analysis showed that the introgression of Gn1a allele exhibited a positive effect on many panicle characters, including longer panicle length and grain length, more grain numbers per panicle, finally resulting in an increased grain yield. The introgression of sd1 allele could significantly reduce the plant height, and no negative effects were found on the panicle performance of the plants containing Gn1a allele. The introgression of qPC-1 could significantly reduce GPC, then increase rice palatability based on the RVA analysis. The result indicated that it is feasible to improve rice yield and grain quality of PE japonica cultivars by replacing these three favorable alleles simultaneously. This strategy could also be applied in the improvement of common japonica cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

PE:

Panicle erectness

GPC:

Grain protein content

ECQ:

Eating and cooking quality

GNPP:

Grain number per panicle

MAS:

Marker-assisted selection

AC:

Amylose content

GC:

Gel consistency

RVA:

Rapid visco analyzer

HPV:

Hot paste viscosity

SBV:

Setback values

CPV:

Cool paste viscosity

BDV:

Breakdown values

PeT:

Peak time

PaT:

Paste temperature

QTL:

Quantitative trait locus

CSSL:

Chromosome segment substitution lines

References

  • Acquaah G (2007) Principles of plant genetics and breeding. Blackwell Publishing, Oxford

    Google Scholar 

  • Ashikari M, Sasaki A, Ueguchi-Tanaka M, Itoh H, Nishimura A, Datta S, Ishiyama K, Saito T, Kobayashi M, Khush G, Kitano H, Matsuoka M (2002) Loss-of-function of a rice gibberellin biosynthetic gene, GA20 oxidase (GA20ox-2), led to the rice green revolution. Breed Sci 52:143–150

    Article  CAS  Google Scholar 

  • Ashikari M, Sakakibara H, Lin S, Yamanoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M (2005) Cytokinin oxidase regulates rice grain production. Science 309:741–745

    Article  CAS  PubMed  Google Scholar 

  • Cagampang GB, Perez CM, Juliano BO (2010) A gel consistency test for eating quality of rice. J Sci Food Agric 24:1589–1594

    Article  Google Scholar 

  • Feng X, Wang C, Nan J, Zhang X, Wang R, Jiang G, Yuan Q, Lin S (2017) Updating the elite rice variety Kongyu131 by improving the Gn1a locus. Rice 10:35

    Article  PubMed  PubMed Central  Google Scholar 

  • Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O’Connell C, Ray DK, West PC, Balzer C, Bennett EM, Carpenter SR, Hill J, Monfreda C, Polasky S, Rockström J, Sheehan J, Siebert S, Tilman D, Zaks DPM (2011) Solutions for a cultivated planet. Nature 478:337–342

    Article  CAS  PubMed  Google Scholar 

  • Fujita D, Trijatmiko KR, Tagle AG, Sapasap MV, Koide Y, Sasaki K, Tsakirpaloglou N, Gannaban RB, Nishimura T, Yanagihara S, Fukuta Y, Koshiba T, Slamet-Loedin IH, Ishimaru T, Kobayashi N (2013) NAL1 allele from a rice landrace greatly increases yield in modern indica cultivars. Proc Natl Acad Sci U S A 110:20431–20436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godfray HC, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818

    Article  CAS  PubMed  Google Scholar 

  • Gopalakrishnan S, Sharma RK, Anand Rajkumar K, Joseph M, Singh VP, Singh AK, Bhat KV, Sigh NK, Mohapatra T (2008) Integrating marker assisted background analysis with foreground selection for identification of superior bacterial blight resistant recombinants in Basmati rice. Plant Breed 127:131–139

    Article  CAS  Google Scholar 

  • Hamaker BR, Griffin VK (1993) Effect of disulfide bond-containing protein on rice starch gelatinization and pasting. Cereal Chem 70:377–380

    CAS  Google Scholar 

  • Hargrove TR, Cabanilla VL (1979) The impact of semi-dwarf varieties on Asian rice-breeding programs. Bioscience 29:731–735

    Article  Google Scholar 

  • He P, Li S, Qian Q, Ma Y, Li J, Wang W, Chen Y, Zhu L (1999) Genetic analysis of rice grain quality. Theor Appl Genet 98:502–508

    Article  CAS  Google Scholar 

  • Hedden P (2003) The genes of the green revolution. Trends Genet 19:5–9

    Article  CAS  PubMed  Google Scholar 

  • Hori K (2018) Genetic dissection and breeding for grain appearance quality in rice. Rice Genomics Genet Breed. 22:435–451

    Article  Google Scholar 

  • Huang X, Qian Q, Liu Z, Sun H, He S, Luo D, Xia G, Chu C, Li J, Fu X (2009) Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet 41:494–497

    Article  CAS  PubMed  Google Scholar 

  • Jantaboon J, Siangliw M, Im-mark S, Jamboonsri W, Vanavichit A, Toojinda T (2011) Ideotype breeding for submergence tolerance and cooking quality by marker-assisted selection in rice. Field Crop Res 123:206–213

    Article  Google Scholar 

  • Jennings PR (1964) Plant type as a rice breeding objective 1. Crop Sci 4:13–15

    Article  Google Scholar 

  • Jiao Y, Wang Y, Xue D, Wang J, Yan M, Liu G, Dong G, Zeng D, Lu Z, Zhu X, Qian Q, Li J (2010) Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet 42:541–544

    Article  CAS  PubMed  Google Scholar 

  • Jin L, Lu Y, Shao Y, Zhang G, Xiao P, Shen S, Corke H, Bao J (2010) Molecular marker assisted selection for improvement of the eating, cooking and sensory quality of rice (Oryza sativa L.). J Cereal Sci 51:159–164

    Article  CAS  Google Scholar 

  • Juliano BO (1971) A simplified assay for milled rice amylose. Cereal Sci Today 16:334–360

    Google Scholar 

  • Li M, Tang D, Wang K, Wu X, Lu L, Yu H, Gu M, Yan C, Cheng Z (2011) Mutations in the F-box gene LARGER PANICLE improve the panicle architecture and enhance the grain yield in rice. Plant Biotechnol J 9:1002–1013

    Article  CAS  PubMed  Google Scholar 

  • Li S, Zhao B, Yuan D, Duan M, Qian Q, Tang L, Wang B, Liu X, Zhang J, Wang J, Sun J, Liu Z, Feng YQ, Yuan L, Li C (2013) Rice zinc finger protein DST enhances grain production through controlling Gn1a/OsCKX2 expression. Proc Natl Acad Sci U S A 110:3167–3172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin M, Fitzgerald MA (2002) Proteins in rice grains influence cooking properties. J Cereal Sci 36:285–294

    Article  CAS  Google Scholar 

  • Miura K, Ikeda M, Matsubara A, Song XJ, Ito M, Asano K, Matsuoka M, Kitano H, Ashikari M (2010) OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat Genet 42:545–549

    Article  CAS  PubMed  Google Scholar 

  • Monna L, Kitazawa N, Yoshino R, Suzuki J, Masuda H, Maehara Y, Tanji M, Sato M, Nasu S, Minobe Y (2002) Positional cloning of rice semidwarfing gene, sd-1: rice “green revolution gene” encodes a mutant enzyme involved in gibberellin synthesis. DNA Res 9:11–17

    Article  CAS  PubMed  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8(19):4321–4325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng B, Kong H, Li Y, Wang L, Zhong M, Gao G, Zhang Q, Luo L, Wang G, Xie W, Chen J, Yao W, Peng Y, Lei L, Lian X, Xiao J, Xu C, Li X, He Y (2014) OsAAP6 functions as an important regulator of grain protein content and nutritional quality in rice. Nat Commun 5:4847

    Article  CAS  PubMed  Google Scholar 

  • Pingali P (2006) Westernization of Asian diets and the transformation of food systems: implications for research and policy. Food Policy 32:281–298

    Article  Google Scholar 

  • Ramalingam J, Basharat HS, Zhang G (2002) STS and microsatellite marker-assisted selection for bacterial blight resistance and waxy genes in rice, Oryza sativa L. Euphytica 127:255–260

    Article  CAS  Google Scholar 

  • Sakamoto T, Matsuoka M (2008) Identifying and exploiting grain yield genes in rice. Curr Opin Plant Biol 11:209–214

    Article  CAS  PubMed  Google Scholar 

  • Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush GS, Kitano H, Matsuoka M (2002) Green revolution: a mutant gibberellin-synthesis gene in rice. Nature 416(6882):701–702

    Article  CAS  PubMed  Google Scholar 

  • Smith AM, Denyer K, Martin C (1997) The synthesis of the starch granule. Annu Rev Plant Physiol Plant Mol Biol 48:67–87

    Article  CAS  PubMed  Google Scholar 

  • Spielmeyer W, Ellis MH, Chandler PM (2002) Semidwarf (sd-1), green revolution rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci U S A 99(13):9043–9048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanksley S, Young N, Paterson N, Bonierbale M (1989) RFLP mapping in plant breeding: new tools for an old science. Nat Biotechnol 7:257–264

    Article  CAS  Google Scholar 

  • Terao T, Hirose T (2015) Control of grain protein contents through SEMIDWARF1 mutant alleles: sd1 increases the grain protein content in Dee-geo-woo-gen but not in Reimei. Mol Gen Genomics 290:939–954

    Article  CAS  Google Scholar 

  • Terao T, Nagata K, Morino K, Hirose T (2010) A gene controlling the number of primary rachis branches also controls the vascular bundle formation and hence is responsible to increase the harvest index and grain yield in rice. Theor Appl Genet 120:875–893

    Article  CAS  PubMed  Google Scholar 

  • Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci U S A 108:20260–20264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umemoto T (2018) Genes affecting eating and processing qualities. Rice Genomics Genet Breed 21:417–434

    Article  Google Scholar 

  • Walcott JJ, Laing DR (1976) Some physiological aspects of growth and yield in wheat crops: a comparison of a semidwarf and a standard height cultivar. Aust J Exp Agric Anim Husb 16:578–587

    Article  Google Scholar 

  • Wang Z, Zheng F, Shen G, Gao J, Snustad D, Li M, Zhang J, Hong M (1995) The amylose content in rice endosperm is related to the post-transcriptional regulation of the waxy gene. Plant J 7:613–622

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Wu K, Qian Q, Liu Q, Li Q, Pan Y, Ye Y, Liu X, Wang J, Zhang J, Li S, Wu Y, Fu X (2017) Non-canonical regulation of SPL transcription factors by a human OTUB1-like deubiquitinase defines a new plant type rice associated with higher grain yield. Cell Res 27:1142–1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei X, Xu J, Guo H, Jiang L, Chen S, Yu C, Zhou Z, Hu P, Zhai H, Wan J (2010) DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously. Plant Physiol 153:1747–1758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Wang Y, Mi XF, Shan JX, Li XM, Xu JL, Lin HX (2016) The QTL GNP1 encodes GA20ox1, which increases grain number and yield by increasing cytokinin activity in rice panicle meristems. PLoS Genet 12:e1006386

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xiao W, Peng X, Luo L, Liang K, Wang J, Huang M, Liu Y, Guo T, Luo W, Yang Q, Zhu X, Wang H, Chen Z (2017) Development of elite restoring lines by integrating blast resistance and low amylose content using MAS. J Integr Agric 17(1):16–27

    Article  Google Scholar 

  • Xing Y, Zhang Q (2010) Genetic and molecular bases of rice yield. Annu Rev Plant Biol 61:421–442

    Article  CAS  PubMed  Google Scholar 

  • Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q (2008) Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet 40:761–767

    Article  CAS  PubMed  Google Scholar 

  • Yan C, Zhou J, Yan S, Chen F, Yeboah M, Tang S, Liang G, Gu M (2007) Identification and characterization of a major QTL responsible for erect panicle trait in japonica rice (Oryza sativa L.). Theor Appl Genet 115:1093–1100

    Article  CAS  PubMed  Google Scholar 

  • Yan C, Yan S, Yang Y, Zeng X, Fang Y, Zeng S, Tian C, Sun Y, Tang S, Gu M (2009) Development of gene-tagged markers for quantitative trait loci underlying rice yield components. Euphytica. 169:215–226

    Article  CAS  Google Scholar 

  • Yang Y, Guo M, Li R, Shen L, Wang W, Liu M, Zhu Q, Hu Z, He Q, Xue Y, Tang S, Gu M, Yan C (2015) Identification of quantitative trait loci responsible for rice grain protein content using chromosome segment substitution lines and fine mapping of qPC-1 in rice (Oryza sativa L.). Mol Breed 35:1–9

    Article  CAS  Google Scholar 

  • Yang Y, Guo M, Sun S, Zou Y, Yin S, Liu Y, Tang S, Gu M, Yang Z, Yan C (2019) Natural variation of OsGluA2 is involved in grain protein content regulation in rice. Nat Commun 10(1):1949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi M, Nwe KT, Vanavichit A, Chai-arree W, Toojinda T (2009) Marker assisted backcross breeding to improve cooking quality traits in Myanmar rice cultivar Manawthukha. Field Crop Res 113:178–186

    Article  Google Scholar 

  • Zeng D, Tian Z, Rao Y, Dong G, Yang Y, Huang L, Leng Y, Xu J, Sun C, Zhang G, Hu J, Zhu L, Gao Z, Hu X, Guo L, Xiong G, Wang Y, Li J, Qian Q (2017) Rational design of high-yield and superior-quality rice. Nat Plants 3:17031

    Article  PubMed  Google Scholar 

  • Zhang W, Xu Z, Zhang L, Chen W, Qiu F, Shao G, Hua Z (2002a) Analysis on evolution for the erect panicle type varieties of rice. J Shenyang Agric Univ 33(3):161–166

    Google Scholar 

  • Zhang W, Xu Z, Chen W, Zhang L, Jin X, Wu X (2002b) The research progress on erect panicle type of rice. J Shenyang Agric Univ 33(6):471–475

    CAS  Google Scholar 

  • Zhang X, Wang J, Huang J, Lan H, Wang C, Yin C, Wu Y, Tang H, Qian Q, Li J, Zhang H (2012) Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice. Proc Natl Acad Sci U S A 109:21534–21539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang G, Li S, Wang L, Ye W, Zeng D, Rao Y, Peng Y, Hu J, Yang Y, Xu J, Ren D, Gao Z, Zhu L, Dong G, Hu X, Yan M, Guo L, Li C, Qian Q (2014) LSCHL4 from Japonica cultivar, which is allelic to NAL1, increases yield of Indica super Rice 93-11. Mol Plant 7(8):1350–1364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Zhu J, Li Z, Yi C, Liu J, Zhang H, Tang S, Gu M, Liang G (2009) Deletion in a quantitative trait gene qPE9-1 associated with panicle erectness improves plant architecture during rice domestication. Genetics 183:315–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The funding was from National Key R&D Program of China (2016YFD0100501) and National Natural Science Foundation of China (31871241, 31671276); Natural Science Foundation of Jiangsu Province (BE2017345, PZCZ201702, BE2018351), and the Research and Innovation Program of Postgraduate in Jiangsu Province (KYCX17_1886); The Priority Academic Program Development of Jiangsu Higher Education Institutions and the Yangzhou University International Academic Exchange Fund; The Foundation of Yangzhou University Excellent Doctoral Dissertation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changjie Yan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 10 kb)

ESM 2

(PDF 96 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Shen, Z., Xu, C. et al. Genetic improvement of panicle-erectness japonica rice toward both yield and eating and cooking quality. Mol Breeding 40, 51 (2020). https://doi.org/10.1007/s11032-020-01127-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-020-01127-7

Keywords

Navigation