Skip to main content
Log in

Wheat methionine sulfoxide reductase genes and their response to abiotic stress

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

The wheat cultivar Shanrong no. 3 (cv. SR3) tolerates both salinity and drought stress more effectively than does its progenitor cultivar Jinan 177 (cv. JN177). When the cultivars are subjected to stress, a number of genes encoding methionine sulfoxide reductase (MSRs) are known to be upregulated in SR3. Here, a set of 12 full length Triticum aestivum MSR (TaMSR) cDNAs have been isolated from cv. SR3. The genes were transcribed in the wheat root, stem, and leaf in plants sampled at various developmental stages. Those induced by salinity and drought harbored known stress-responsive cis elements in their promoter region. The constitutive expression in Arabidopsis thaliana of four MSRs which were induced by salt and drought in microarray assay showed that the product of one (TaMSRA2) heightened the plant’s tolerance to NaCl, methylviologen (MV), and abscisic acid, that of the second (TaMSRA5) enhanced salinity tolerance, that of the third (TaMSRB1.1) increased tolerance to salinity, MV and H2O2, and that of the fourth (TaMSRB5.1) increased tolerance to both salinity and mannitol. The effect of the presence in A. thaliana of TaMSRB1.1 was to suppress the accumulation of reactive oxygen species and to increase the intracellular content of soluble sugars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Achilli C, Ciana A, Minetti G (2015) The discovery of methionine sulfoxide reductase enzymes: an historical account and future perspectives. Biofactors 41:135–152

    Article  CAS  PubMed  Google Scholar 

  • Asselbergh B, Curvers K, Franca SC, Audenaert K, Vuylsteke M, Van BF, Höfte M (2007) Resistance to Botrytis cinerea in sitiens, an abscisic acid-deficient tomato mutant, involves timely production of hydrogen peroxide and cell wall modifications in the epidermis. Plant Physiol 144:1863–1877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bechtold U, Murphy DJ, Mullineaux PM (2004) Arabidopsis peptide methionine sulfoxide reductase 2 prevents cellular oxidative damage in long nights. Plant Cell 16:908–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beckman KB, Ames BN (1997) Oxidative decay of DNA. J Biol Chem 272:19633–19636

    Article  CAS  PubMed  Google Scholar 

  • Brot N, Weissbach J, Werth J, Weissbach H (1981) Enzymatic reduction of protein-bound methionine sulfoxide. Proc Natl Acad Sci U S A 78:2155–2158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Châtelain E, Satour P, Laugier E, Ly VB, Payet N, Rey P, Montrichard F (2013) Evidence for participation of the methionine sulfoxide reductase repair system in plant seed longevity. Proc Natl Acad Sci U S A 110:3633–3638

    Article  PubMed  PubMed Central  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Grimaud R, Ezraty B, Mitchell JK, Lafitte D, Briand C, Derrick PJ, Barras F (2001) Repair of oxidized proteins. Identification of a new methionine sulfoxide reductase. J Biol Chem 276:48915–48920

    Article  CAS  PubMed  Google Scholar 

  • Guo X, Wu Y, Wang Y, Chen Y, Chu C (2009) OsMSRA4.1 and OsMSRB1.1, two rice plastidial methionine sulfoxide reductases, are involved in abiotic stress responses. Planta 230:227–238

    Article  CAS  PubMed  Google Scholar 

  • Gustavsson N, Kokke BP, Härndahl U, Silow M, Bechtold U, Poghosyan Z, Murphy D, Boelens WC, Sundby C (2002) A peptide methionine sulfoxide reductase highly expressed in photosynthetic tissue in Arabidopsis thaliana can protect the chaperone-like activity of a chloroplast-localized small heat shock protein. Plant J 29:545–553

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9:868–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karan R, Subudhi PK (2012) A stress inducible SUMO conjugating enzyme gene (SaSce9) from a grass halophyte Spartina alterniflora enhances salinity and drought stress tolerance in Arabidopsis. BMC Plant Biol 12:187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JS, Park HM, Chae S, Lee TH, Hwang DJ, Oh SD, Park JS, Song DG, Pan CH, Choi D, Kim YH, Nahm BH, Kim YK (2014) A pepper MSRB2 gene confers drought tolerance in rice through the protection of chloroplast-targeted genes. PLoS One 9:e90588

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Smith B, Novotny DD (2004) Biomedical informatics and granularity. Comp Funct Genomics 5:501–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larkin EK, Morris NJ, Li Y, Nock NL, Stein CM (2007) Comparison of affected sibling-pair linkage methods to identify gene x gene interaction in GAW15 simulated data. BMC Proc 1:S66

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee SH, Li CW, Koh KW, Chuang HY, Chen YR, Lin CS, Chan MT (2014) MSRB7 reverses oxidation of GSTF2/3 to confer tolerance of Arabidopsis thaliana to oxidative stress. J Exp Bot 65:5049–5062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Lv J, Zhao X, Ai X, Zhu X, Wang M, Zhao S, Xia G (2010) TaCHP: a wheat zinc finger protein gene down-regulated by abscisic acid and salinity stress plays a positive role in stress tolerance. Plant Physiol 154:211–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li CW, Lee SH, Chieh PS, Lin CS, Wang YC, Chan MT (2012) Arabidopsis root-abundant cytosolic methionine sulfoxide reductase B genes MsrB7 and MsrB8 are involved in tolerance to oxidative stress. Plant Cell Physiol 53:1707–1719

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Li S, Wang M, Xia G (2012) A transcriptomic analysis reveals the nature of salinity tolerance of a wheat introgression line. Plant Mol Biol 78:159–169

    Article  CAS  PubMed  Google Scholar 

  • Mishra NS, Tuteja R, Tuteja N (2006) Signaling through MAP kinase networks in plants. Arch Biochem Biophys 452(1):55–68

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497

    Article  CAS  Google Scholar 

  • Rouhier N, Vieira Dos Santos C, Tarrago L, Rey P (2006) Plant methionine sulfoxide reductase A and B multigenic families. Photosynth Res 89:247–262

    Article  CAS  PubMed  Google Scholar 

  • Sekulska-Nalewajko J, Gocławski J, Chojak-Koźniewska J, Kuźniak E (2016) Automated image analysis for quantification of reactive oxygen species in plant leaves. Methods 16:30150–30155

    Google Scholar 

  • Tarrago L, Laugier E, Zaffagnini M, Marchand C, Le MP, Rouhier N, Lemaire SD, Rey P (2009a) Regeneration mechanisms of Arabidopsis thaliana methionine sulfoxide reductases B by glutaredoxins and thioredoxins. J Biol Chem 284:18963–18971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarrago L, Laugier E, Rey P (2009b) Protein-repairing methionine sulfoxide reductases in photosynthetic organisms: gene organization, reduction mechanisms, and physiological roles. Mol Plant 2:202–217

    Article  CAS  PubMed  Google Scholar 

  • Torres MA, Jones JD, Dangl JL (2005) Pathogen-induced, NADPH oxidase-derived reactive oxygen intermediates suppress spread of cell death in Arabidopsis thaliana. Nat Genet 37:1130–1134

    Article  CAS  PubMed  Google Scholar 

  • Vieira Dos Santos C, Cuiné S, Rouhier N, Rey P (2005) The Arabidopsis plastidic methionine sulfoxide reductase B proteins. Sequence and activity characteristics, comparison of the expression with plastidic methionine sulfoxide reductase A, and induction by photooxidative stress. Plant Physiol 138:909–922

    Article  PubMed  Google Scholar 

  • Wang M, Qin L, Xie C, Li W, Yuan J, Kong L, Yu W, Xia G, Liu S (2014) Induced and constitutive DNA methylation in a salinity-tolerant wheat introgression line. Plant Cell Physiol 55:1354–1365

    Article  CAS  PubMed  Google Scholar 

  • Weissbach H, Resnick L, Brot N (2005) Methionine sulfoxide reductases: history and cellular role in protecting against oxidative damage. Biochim Biophys Acta 1703:203–212

    Article  CAS  PubMed  Google Scholar 

  • Xia G, Xiang F, Zhou A, Wang H, Chen H (2003) Asymmetric somatic hybridization between wheat (Triticum aestivum L.) and Agropyron elongatum (host) Nevishi. Theor Appl Genet 107:299–305

    Article  CAS  PubMed  Google Scholar 

  • Yemm EW, Willis AJ (1954) The estimation of carbohydrates in plant extracts by the anthrone. Biochem J 57:508–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin C, Zheng L, Zhu J, Chen L, Ma A (2015) Enhancing stress tolerance by overexpression of a methionine sulfoxide reductase A (MsrA) gene in Pleurotus ostreatus. Appl Microbiol Biotech 99:3115–3126

    Article  CAS  Google Scholar 

  • Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2:1565–1572

    Article  CAS  PubMed  Google Scholar 

  • Zhang XH, Weissbach H (2008) Origin and evolution of the protein-repairing enzymes methionine sulphoxide reductases. Biol Rev Camb Philos Soc 83:249–257

    Article  PubMed  Google Scholar 

  • Zhu J, Ding P, Li Q, Gao Y, Chen F, Xia G (2015) Molecular characterization and expression profile of methionine sulfoxide reductase gene family in maize under abiotic stresses. Gene 562:159–168

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by Natural Science Foundation of China (31471486, 31271706) and agricultural industrialization development project of high-quality seed from Shandong Province (2013). Authors thank former Prof. Robert Koebner in John Innes Centre of the UK for critical comments and language improvement.

Author contribution

FC designed the research. FC and PD wrote the paper. PD, YG and JZ performed the experiments. GX contributed to data analysis. All authors read and approved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fanguo Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Fig. S1

(DOC 784 kb)

Fig. S2

(DOC 3093 kb)

Fig. S3

(DOC 3137 kb)

Fig. S4

(DOC 1752 kb)

Supplementary material

S1 (DOC 32 kb)

Table S1

(DOC 41 kb)

Table S2

(DOC 61 kb)

Table S3

(DOC 32 kb)

Table S4

(DOC 48 kb)

Table S5

(DOC 56 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, P., Gao, Y., Zhu, J. et al. Wheat methionine sulfoxide reductase genes and their response to abiotic stress. Mol Breeding 36, 169 (2016). https://doi.org/10.1007/s11032-016-0597-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-016-0597-1

Keywords

Navigation