Skip to main content

Advertisement

Log in

Thai jasmine rice cultivar KDML105 carrying Saltol QTL exhibiting salinity tolerance at seedling stage

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Saltol, the major salinity tolerance quantitative trait loci (QTL) in rice, was introgressed from IR66946-3R-230-1-1 (FL530) into Khao Dawk Mali 105 (KDMl105) by two rounds of marker-assisted backcrossing (MAB). Twenty-eight BC2F2 introgression lines (BILs) with positive Saltol allele (BIL+Saltol) and 19 BILs with negative Saltol allele (BIL−Saltol) were validated for the effect of Saltol as key salinity tolerant trait at seedling stage. A hydrophonic system with salt stress of 12 dS m−1 (130 mM Na+) was conducted, and significant differences between BILs+Saltol and BILs−Saltol were observed for the period of plant survival (PPS), total K+ (T-K+) and Na+ (T-Na+) concentration, whole plant Na+-K+ ratio (T-Na+/K+), shoot Na+ (S-Na+) and K+ (S-K+) concentration, and shoot Na+-K+ ratio (S-Na+/K+). BILs+Saltol displayed higher PPS, uptake less Na+ (T-Na+; 43.4 ppm), and more K+ (T-K+; 30.9 ppm), while the BILs−Saltol uptake more Na+ (T-Na+; 45.7 ppm) and less K+ (T-K+; 28.2 ppm). Direct effects on PPS and salt injury score (SIS) were observed, indicating Na+/K+ homeostasis mechanism by the Saltol under hydrophonic salt stress. All BILs+Saltol recovered KDML105 cooking quality profile such as low apparent amylose content (AAC), high score of alkaline spreading value (ASV), intermediate gel consistency (GC), and strong fragrance. However, variation in agronomic traits was observed. The possibility of lowering S-Na+/K+ ratio under salt stress at seedling stage in KDML105 by introgression of the Saltol was demonstrated. Currently, BC2F7 of the BIL+Saltol selected lines are being tested for salinity tolerance in the salt-affected areas in the northeast of Thailand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Akbar M, Yabuno T (1974) Breeding for saline-resistant varieties of rice. II. Comparative performance of some rice varieties to salinity during early developing stage. Jpn J Breed 25:176–181

    Google Scholar 

  • Ali AJ, Xu JL, Ismail AM, Fu BY, Vijaykumar CHM, Gao YM, Domingo J, Maghirang R, Yu SB, Gregorio G, Yanaghihara S, Cohen M, Carmen B, Mackill D, Li ZK (2006) Hidden diversity for abiotic and biotic stress tolerances in the primary gene pool of rice revealed by a large backcross breeding program. Field Crop Res 97:66–76. doi:10.1016/j.fcr.2005.08.016

    Article  Google Scholar 

  • Amtmann A, Armengaud P, Volkov V (2004) Potassium nutrition and salt stress. Membrane Transport in Plants, Blackwell, Oxford

    Google Scholar 

  • Arunin S (1989) Reforestation as preventive measure for salinization in northeast Thailand. J Agric Sci 22:141–153

    Google Scholar 

  • Asch F, Dingkuhn M, rffling KD, Miezan K (2000) Leaf K/Na ratio predicts salinity induced yield loss in irrigated rice. Euphytica 113:109–118

    Article  Google Scholar 

  • Barr HD, Weatherley PE (1962) A re-examination of the relative turgidity technique for estimating water deficit in leaves. Aust J Biol Sci 15:413–428

    Article  Google Scholar 

  • Blumwald E (2000) Sodium transport and salt tolerance in plants. Curr Opin Cell Biol 12:431–434

    Article  CAS  PubMed  Google Scholar 

  • Blumwald E, Aharon GS, Apse MP (2000) Sodium transport in plant cells. Biochemica et Biophysica Acta 1465:140–151

    Article  CAS  Google Scholar 

  • Bohnert HJ, Jensen RG (1996) Metabolic engineering for increased salt tolerance the next step. Aust J Plant Physiol 23:661–667

    Article  Google Scholar 

  • Bonilla PS, Dvorak J, Mackill D, Deal K, Gregorio G (2002) RFLP and SSLP mapping of salinity tolerance genes in chromosome 1 of rice (Oryza sativa L.) using recombinant inbred lines. Philipp Agric Sci 85:64–74

    Google Scholar 

  • Caetano-Anollés G (1997) Resolving DNA amplification products using polyacrylamide gel electrophoresis and silver staining. Ibid:119–134

  • Chen Z, Gallie D (2004) The ascorbic acid redox state controls guard cell signaling and stomata movement. Plant Cell 16:1143–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng L, Wang Y, Meng L, Hu X, Cui Y, Sun Y, Zhu L, Ali J, Xu J, Li Z (2012) Identification of salt-tolerant QTLs with strong genetic background effect using two sets of reciprocal introgression lines in rice. Genome 55:1–11. doi:10.1139/G11-075

    Article  Google Scholar 

  • Collins NC, Tardieu F, Tuberosa R (2008) Quantitative trait loci and crop performance under abiotic stress: where do we stand? Plant Physiol 147:469–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • FAO (2011) Rice and climate changes. http://www.fao.org/fileadmin/templates/agphome/documents/Rice/rice_fact_sheet.pdf.

  • Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55(396):307–319. doi:10.1093/jxb/erh003

    Article  CAS  PubMed  Google Scholar 

  • Flowers TJ, Flowers SA (2005) Why does salinity pose such a difficult problem for plant breeders? Agric Water Manag 78:15–24

    Article  Google Scholar 

  • Flowers TJ, Hajibagheri MA (2001) Salinity tolerance in Hordeum vulgare: ion concentrations in root cells of cultivars differing in salt tolerance. Plant Soil 231(1):1–9. doi:10.1023/a:1010372213938

    Article  CAS  Google Scholar 

  • Flowers TJ, Koyama ML, Flower SA, Sudhakar C, Singh KP, Yeo AR (2000) QTL: their place in engineering tolerance of rice to salinity. J Exp Bot 51:99–106

    Article  CAS  PubMed  Google Scholar 

  • Genc Y, McDonald GK, Tester M (2007) Reassessment of tissue Na+ concentration as a criterion for salinity tolerance in bread wheat. Plant, Cell and Environment 30:1486–1498

    Article  CAS  PubMed  Google Scholar 

  • Golldack D, Su H, Quigley F, Kamasani U, Mun˜oz-Garay C, Bladeras E, Popova O, Bennett J, Bohnert H, Pantoja O (2002) Characterization of a HKT-type transporter in rice as a general alkali cation transporter. Plant J 31:529–542

    Article  CAS  PubMed  Google Scholar 

  • Gong JM, He P, Qian Q, Shen LS, Zhu LH (1999) Identification of salt tolerance QTL in rice. China Sci Bull 44:68–71

    Article  Google Scholar 

  • Grades E (2006) Introduction of salt tolerance in rice (Oryza sativa L.) by brassinosteroids. Rheinischen Friedrich-Wilhelms-Universität Bonn, Bonn

  • Greenway H, Munns R (1980) Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physiol 31:149–190

    Article  CAS  Google Scholar 

  • Gregorio GB, Senadhira D (1993) Genetics analysis of salinity tolerance in rice. Theor Appl Gen 86:333–338

    CAS  Google Scholar 

  • Gregorio GB, Senadhira D, Mendoza RD (1997) Screening rice for salinity tolerance. IRRI Discussion Paper Series No. 22 International Rice Research Institute, Manila, Philippines

  • Gregorio GB, Senadhira D, Mendoza RD, Manigbas NL, Roxas JP, Guerta CQ (2002) Progress in breeding for salinity tolerance and associated abiotic stresses in rice. Field Crop Res 76:91–101

    Article  Google Scholar 

  • Haq TU, Gorham J, Akhtar J, Akhtar N, Steele KA (2010) Dynamic quantitative trait loci for salt stress components on chromosome 1 of rice. Funcl Plant Biol 37:634–645

    Article  Google Scholar 

  • Hasan MM, Rafii MY, Ismail MR, Mahmood M, Rahim HA, Alam MA, Ashkani S, Malek MA, Latif MA (2015) Marker-assisted backcrossing: a useful method for rice improvement. Biotechnology & Biotechnological Equipment 29(2):237–254

    Article  Google Scholar 

  • Hauser F, Horie T (2010) A conserved primary salt tolerance mechanism mediated by HKT transporters: a mechanism for sodium exclusion and maintenance of high K+/Na+ ratio in leaves during salinity stress. Plant Cell Environ 33:552–565

    Article  CAS  PubMed  Google Scholar 

  • Horie T, Yoshida K, Nakayama H, Ymada K, Oiki S, Shinmyo A (2001) Two types of HKT transporters with different properties of Na+ and K+ transport in Oriza sativa. Plant J 27:115–128

    Article  Google Scholar 

  • Horie T, Hauser F, Schroeder J (2009) HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants. Trends Plant Sci 14:660–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horie T, Karahara I, Katsuhara M (2012) Salinity tolerance mechanisms in glycophytes: an overview with the central focus on rice plants. Rice 5:11. doi:10.1186/1939-8433-5-11

    Article  PubMed  Google Scholar 

  • Islam MR, Gregorio GB (2013) Progress of salinity tolerant rice variety development in Bangladesh. SABRAO Journal of Breeding and Genetics 45(1):21–30

    Google Scholar 

  • Ismail AM, Heuer S, Thomson MJ, Wissuwa M (2007) Genetic and genomic approaches to develop rice germplasm for problem soils. Plant Mol Biol 65:547–570

    Article  CAS  PubMed  Google Scholar 

  • Kaddah MT, Lehman WF, Robinson FE (1973) Tolerance of rice (Oryza sativa L.) to salt during boot, flowering, and grain filling stages. Agronomy J 65:845–847

    Article  Google Scholar 

  • Khan MA, Shirazi MU, Khan MA, Mujtaba SM, Islam E, Mumtaz S, Shereen A, Ansari RU, Ashraf MY (2009) Role of proline, K/Na ratio and chlorophyll content in salt tolerance of wheat (Triticum aestivum L.). Pak J Bot 41(2):633–638

    Google Scholar 

  • Koyama ML, Levesley A, Koebner RMD, Flowers TJ, Yeo AR (2001) Qualitative trait loci for component physiological traits determining salt tolerance in rice. Plant Physiol 125:406–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lacan D, Durand M (1996) Na+-K+ exchange at the xylem/symplast boundary (its significance in the salt sensitivity of soybean). Plant Physiol 110:705–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanceras J, Huang ZL, Naivikul O, Vanavichit A, Ruanjaichon V, Tragoonrung S (2000) Mapping of genes for cooking and eating qualities in Thai jasmine rice (KDML105). DNA Res 7:93–101

    Article  CAS  PubMed  Google Scholar 

  • Lang N, Buu BC, Ismail A (2008) Molecular mapping and marker-assisted selection for salt tolerance in rice (Oryza sativa L.). Omonrice 16:50–56

    Google Scholar 

  • Läuchli A (1984) Salt exclusion: an adaptation of legumes for crops and pastures under saline conditions. Salinity Tolerance in Plants. Strategies for Crop Improvement.:171–187

  • Lee KS (1995) Variability and genetics of salt tolerance in japonica rice (O. sativa L.). University of the Philippines Los Ban˜os, Laguna

    Google Scholar 

  • Lee SY, Ahn JH, Cha YS, Yun DW, Lee MC, Ko JC, Lee KS, Eun MY (2006) Mapping of quantitative trait loci for salt tolerance at the seedling stage in rice. Mol Cells 21(2):192–196

    CAS  PubMed  Google Scholar 

  • Liao CY, Wu P, Hu B, Yi KK (2001) Effects of genetic background and environment on QTLs and epistasis for rice (Oryza sativa L.) panicle number. Theor Appl Genet 103:104–111

    Article  CAS  Google Scholar 

  • Lin HX, Zhu MZ, Yano M, Gao JP, Linang ZW, Su WA, Hu XH, Ren ZH, Chao DY (2004) QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance. Theor Appl Genet 108:253–260. doi:10.1007/s00122-003-1421-y

    Article  CAS  PubMed  Google Scholar 

  • Mäser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJM, Sanders D, Harper JF, Tchieu J, Gribskov M, Persans MW, Salt DE, Kim SA, Guerinot ML (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 126:1646–1667

    Article  PubMed  PubMed Central  Google Scholar 

  • Maathuis FJM, Amtmann A (1999) K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratios. Ann Bot 84:123–133

    Article  CAS  Google Scholar 

  • Mishra B, Singh RK, Senadhira D (1997) Enhancing genetic resourcea and breeding for problem soils

  • Mohammadi-Nejad G, Arzani A, Rezai AM, Singh RK, Gregorio GB (2008) Assessment of rice genotypes for salt tolerance using microsatellite markers associated with the Saltol QTL. Afr J Biotechnol 7(6):730–736

    Google Scholar 

  • Moradi F, Ismail AM (2007) Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice. Ann Bot 99:1161–1173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munns R, James R (2003) Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant Soil 253:201–218

    Article  CAS  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

  • Negrão S, Almadanim MC, Pires IS, Abreu IA, Maroco J, Courtois B, Gregorio GB, McNally KL, Oliveira MM (2013) New allelic variants found in key rice salt-tolerance genes: an association study. Plant Biotechnol J 11:87–100. doi:10.1111/pbi.12010

    Article  PubMed  Google Scholar 

  • Niones J (2004) Fine mapping of the salinity tolerance gene on chromosome 1 of rice (Oryza sativa L.) using near isogenic lines. University of Philippines, Los Banos, Laguna, Philippines

  • Oliver-Inciong S (1996) Philippine NGO distributes salt-tolerant varieties. In: IRRI (ed) listening to the farmers. The International Rice Research Institute, Los Banos, Laguna, Philippines

  • Prasad SR, Bagali PG, Hittalmani S, Shashidhar HE (2000) Molecular mapping of quantitative trait loci associated with seedling tolerance to salt stress in rice (Oryza sativa L.). Curr Sci 78(2):162–164

    CAS  Google Scholar 

  • Ren ZH, Gao JP, Li GL, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet 37:1141–1146

    Article  CAS  PubMed  Google Scholar 

  • Senadhira D, Neue HU, Akbar M (1994) Development of improved donors for salinity tolerance in rice through somaclonal variation. SABRAO J 26(1–2):19–25

    Google Scholar 

  • Serrano R (1996) Salt tolerance in plants and microorganisms: toxicity targets and defense responses. Int Rev Cytol 165:1–52

    Article  CAS  PubMed  Google Scholar 

  • Singh RK, Gregorio GB, Jain RK (2007) QTL mapping for salinity tolerance in rice. Physiol Mol Biol Plants 13:87–99

    CAS  Google Scholar 

  • Stam P, Zeven AC (1981) The theoretical proportion of the donor genome in near-isogenic lines of self-fertilizers bred by backcrossing. Euphytica 30:227–238

    Article  Google Scholar 

  • Sun J, zou DT, Luan FS, zhao HW, Wang JG, Liu HL, Xie DW, su DQ, Ma J, LIU ZL (2014) Dynamic QTL analysis of the Na+ content, K+ content, and Na+/K+ ratio in rice roots during the field growth under salt stress. Biol Plant 58(4):689–696. doi:10.1007/s10535-014-0445-2

    Article  CAS  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plant. Ann Bot 91:503–527. doi:10.1093/aob/mcg058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomson MJ, de Ocampo M, Egdane J, Akhlasur Rahman M, Sajise AG, Adorada DL, Tumimbang-Raiz E, Blumwald E, Seraj ZI, Singh RK, Gregorio GB, Ismail AM (2010) Characterizing the Saltol quantitative trait locus for salinity tolerance in rice. Rice 3(2):148–160

  • Toenniessen GH (1984) Review of the world food situation and the role of salt-tolerant plants. In: Staples RC, Toenniessen GH (eds) Salinity tolerance in plant-strategies for crop improvement. John Wiley and Sons, New York, pp. 399–413

    Google Scholar 

  • Tumimbang EB, Adorada DL, Noniez J, Elahi F, Seraj Z, Gregorio GB (2003) Developing near-isogenic rice lines (NILs) to fine map the salinity tolerance gene in chromosome 1. Crop Protection Journal

  • UNFCCC (2007) Climate change: impacts, vulnerabilities and adaptation in developing countries. The United Nations Framework Convention on Climate Change. http://unfccc.int/resource/docs/publications/impacts.pdf

  • Volkov V, Wang B, Dominy PJ, Fricke W, Amtmann A (2004) Thellungiella halophila, a salt-tolerant relative of Arabidopsis thaliana, possesses effective mechanisms to discriminate between potassium and sodium. Plant Cell Environ 27:1–14

    Article  CAS  Google Scholar 

  • Walai H, Wilson C, Condamine P, Liu X, Ismail AM, Zeng L, Wanamaker SI, Mandal J, Xu J, Cui X, Close TJ (2005) Comparative transcriptional profiling of two contrasting rice genotypes under stress during the vegetative growth stage. Plant Physiol 139:822–835

    Article  Google Scholar 

  • Wang Z, Chen Z, Cheng J, Lai Y, Wang J, Bao Y, Huang J, Zhang H (2012) QTL analysis of Na+ and K+ concentrations in roots and shoots under different levels of NaCl stress in rice (Oryza sativa L.). PLoS One 7(12):e51202. doi:10.1371/journal.pone.0051202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Zang J, Sun Y, Ali J, Xu J, Li Z (2013) Background-independent quantitative trait loci for drought tolerance identified using advanced backcross introgression lines in rice. Crop Sci 53:430–441. doi:10.2135/cropsci2012.06.0361

    Article  Google Scholar 

  • Wang X, Pang Y, Zhang J, Zhang Q, Tao Y, Feng B, Zheng T, Xu J, Li Z (2014a) Genetic background effects on QTL and QTL × environment interaction for yield and its component traits as revealed by reciprocal introgression lines in rice. THE CROP JOURNAL 2:345–357

    Article  Google Scholar 

  • Wang Y, Zhang Q, Zheng T, Cui Y, Zhang W, Xu J, Li Z (2014b) Drought-tolerance QTLs commonly detected in two sets of reciprocal introgression lines in rice. Crop and Pasture Science 65(2):171–184

    Article  Google Scholar 

  • Xie JH, Zapata-Arias FJ, Shen M, Afza R (2000) Salinity tolerant performance and genetic diversity of four rice varieties. Euphytica 116:105–110

    Article  CAS  Google Scholar 

  • Yeo AR, Flowers TJ (1986) Salinity resistance in rice (Oryza sativa L.) and a pyramiding approach to breeding varieties for saline soils. Funct Plant Biol 13:161–173

  • Yi M, New KT, Vanavichit A, Chai-arree W, Toojinda T (2009) Marker assisted backcross breeding to improve cooking quality traits in Myanmar rice cultivar Manawthukha. Field Crops Res 113:178–186

    Article  Google Scholar 

  • Yoshida S, Forno DA, Cock JH, Gomez KA (1976) Routine procedure for growing rice plants in culture solution. Laboratory manual for physiological studies of rice. The International Rice Research Institute, Los Banos, Laguna, Philippines

  • Zepeda-Jazo I, Shabala S, Chen Z, Pottosin II (2008) Na+ − K+ transport in roots under salt stress. Plant Signal Behav 3(6):401–403

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang GY, Guo Y, Chen SL, Chen SY (1995) RFLP tagging of a salt tolerance gene in rice. Plant Sci 110:227–234

    Article  CAS  Google Scholar 

  • Zhao X-h, QIN Y, JIA B-y, Kim S-M, Lee H-S, Eun M-Y, Kim K-M, Sohn J-K (2013) Comparison and analysis of QTLs, Epistatic effects and QTL × environment interactions for yield traits using DH and RILs populations in rice. J Integr Agric 12(2):198–208

    Article  Google Scholar 

  • Zheng TQ, Wang Y, Ali AJ, Zhu LH, Sun Y, Zhai HQ, Mei HW, Xu ZJ, Xu JL, Li ZK (2011) Genetic effects of background-independent loci for grain weight and shape identified using advanced reciprocal introgression lines from Lemont × Teqing in rice. Crop Sci 51:2525–2534. doi:10.2135/cropsci2011.05.0259

    Article  Google Scholar 

  • Zhu GY, Kinet JM, Lutts S (2001) Characterisation of rice (Oryza sativa L.) F3 populations selected for salt resistance I. Physiological behaviour during vegetative growth. Euphytica 121:25–263

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Rockefeller Foundation and the Cluster and Program Management, National Science and Technology Development Agency (NSTDA), Thailand. We thank all the staff of Rice Gene Discovery Unit and the graduate students in the MAS lab for their technical support in the laboratory, greenhouse, and field. We also thank the staff of Ubon Ratchathani Rice Research Center for their support in the salt tolerance evaluation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Toojinda.

Electronic supplementary material

Figure S1

(DOCX 12 kb)

Figure S2

(DOCX 12 kb)

Table S1

(DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Punyawaew, K., Suriya-arunroj, D., Siangliw, M. et al. Thai jasmine rice cultivar KDML105 carrying Saltol QTL exhibiting salinity tolerance at seedling stage. Mol Breeding 36, 150 (2016). https://doi.org/10.1007/s11032-016-0574-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-016-0574-8

Keyword

Navigation