Skip to main content
Log in

Genetic analysis and molecular mapping of seedling survival drought tolerance gene in lentil (Lens culinaris Medikus)

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Lentil populations were developed from crosses between ‘JL-3’ (sensitive to drought stress) and ‘PDL-1’ and ‘FLIP-96-51’ (tolerant to drought stress), to study the inheritance of drought tolerance and to identify the markers associated with it. The parental types, F1, F2, F3, and backcross (BC) generations were screened for drought tolerance using seedling survivability and drought scores. The F1 hybrids responded similar to the drought-tolerant parent, indicating dominance of seedling drought tolerance over sensitivity. Segregation for seedling survival drought tolerance versus sensitivity in F2 generation was in complete agreement with monogenic 3:1 ratio. The F3 families and backcross data additionally confirmed monogenic tolerance based on seedling survival under drought. Out of 51 SSR markers screened, thirteen markers were polymorphic between the parental types. Seven markers among them were found to be associated with seedling survival drought tolerance through bulk segregant analysis. Association of these markers with seedling survival drought tolerance was further confirmed through their screening on 10 drought-tolerant and drought-sensitive genotypes. These seven markers were screened in F2 mapping population (JL-3 × PDL-1) of 101 individuals to map their position in relation to the gene for seedling survival drought tolerance. Linkage analysis mapped the seven markers within a map distance of 133.2 cM. A single major gene Sdt was identified with a LOD value of 19.9 and phenotypic variation (R 2) of 69.7 %. The Sdt locus was obtained in the marker interval of PLC_105–PBA_LC_1480 spanning 24.9 cM with the closest marker PLC_105 at a distance of 9.0 cM on the obtained linkage group. This is the first report on genetic control and linkage of SSR markers for drought tolerance in lentil. These linked markers can be used in molecular breeding programmes for introgression of seedling survival drought tolerance gene in high-yielding cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acevedo E, Ceccarelli S (1989) Role of physiologist-breeder in a breeding program for drought resistance conditions. In: Baker WG (ed) Drought resistance in cereals. CAB Int, Wallingford, pp 117–139

    Google Scholar 

  • Altinkut A, Gozukirmizi N (2003) Search for microsatellite markers associated with water-stress tolerance in wheat through bulked segregant analysis. Mol Biotechnol 23(2):97–106

    Article  CAS  PubMed  Google Scholar 

  • Arraudeau MA (1989) Breeding strategies for drought resistance. In: Baker WG (ed) Drought resistance in cereals. CAB Int, Wallingford, pp 107–116

    Google Scholar 

  • Ashley J (1993) Drought and crop adaptation. In: Rowland JRJ (ed) Dryland farming in Africa. Macmillan Press Ltd, London, pp 46–67

    Google Scholar 

  • Basal H, Smith CW, Thaxton PS, Hemphill JK (2005) Seedling drought tolerance in upland cotton. Crop Sci 45:766–771

    Article  Google Scholar 

  • Blum A (1985) Breeding crop varieties for stress environments. CRC Crit Rev Plant Sci 2:199–238

    Article  Google Scholar 

  • Boyer JS (1996) Advances in drought tolerance in plants. Adv Agron 56:189–218

    Google Scholar 

  • Dhanda SS, Sethi GS, Behl RK (2004) Indices of drought tolerance in wheat genotypes at early stages of plant growth. J Agron Crop Sci 190:6–12

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Ekanayake IJ, O’Toole JC, Carrity DP, Masajo TM (1985) Inheritance of root characters and their relations to drought resistance in rice. Crop Sci 25:927–933

    Article  Google Scholar 

  • Erskine W, Sarker A, Kumar S (2011) Crops that feed the world. Investing in lentil improvement toward a food secure world. Food Secur 3(2):127–139

    Article  Google Scholar 

  • Eujayl I, Baum M, Powell W, Erskine W, Pehu E (1998) A genetic linkage map of lentil (Lens sp.) based on RAPD and AFLP markers using recombinant inbred lines. Theor Appl Genet 97:83–89

    Article  CAS  Google Scholar 

  • FAO (Food and Agricultural Organization) (2014) http://www.fao.org

  • Hall AE, Thiaw S, Ismail AM, Ehlers JD (1997) Water-use efficiency and drought adaptation of cowpea. In: Singh BB (ed) Advances in cowpea research. IITA, Ibadan, pp 87–98

    Google Scholar 

  • Hameed A, Goher M, Iqbal N (2010) Evaluation of seedling survivability and growth response as selection criteria for breeding drought tolerance in wheat. Cereal Res Commun 38(2):193–202

    Article  Google Scholar 

  • Hamwieh A, Udupa SM, Choumane W, Sarker A, Dreyer F, Jung C, Baum M (2005) A genetic linkage map of Lens sp. based on microsatellite and AFLP markers and the localization of Fusarium vascular wilt resistance. Theor Appl Genet 110:669–677

    Article  CAS  PubMed  Google Scholar 

  • Havey MJ, Muehlbauer FJ (1989) Variability for restriction fragment lengths and phylogenies in lentil. Theor Appl Genet 77:839–843

    Article  CAS  PubMed  Google Scholar 

  • Idrissi O, Houasli C, Udupa SM, Keyser ED, Damme PV, Riek JD (2015) Genetic variability for root and shoot traits in a lentil (Lens culinaris Medik.) recombinant inbred line population and their association with drought tolerance. Euphytica 204:693–709

    Article  CAS  Google Scholar 

  • Jain N, Dikshit HK, Singh D, Singh A, Kumar H (2013) Discovery of EST-derived microsatellite primers in the legume Lens culinaris (Fabaceae). Appl Plant Sci. doi:10.3732/apps.1200539

  • Johansen C, Baldev B, Brouwer JB, Erskine W, Jermyn WA, Li-Juan L, Malik BA, Ahad Miah A, Silim SN (1994) Biotic and abiotic stresses constraining productivity of cool season food legumes in Asia, Africa and Oceania. Curr Plant Sci Biotechnol Agric 19:175–194

    Article  Google Scholar 

  • Kanagaraj P, Prince KSJ, Sheeba JA, Biji KR, Paul SB, Senthil A, Babu RC (2010) Microsatellite markers linked to drought resistance in rice (Oryza sativa L.). Curr Sci 98(6):836–839

    CAS  Google Scholar 

  • Kaur S, Cogan N, Amber S, Noy D, Butsch M, Froster JW, Materne M (2014) EST-SNP discovery and dense genetic mapping in lentil (Lens culinaris Medik.) enable candidate gene selection for boron tolerance. Theor Appl Genet 127(3):703–713

    Article  CAS  PubMed  Google Scholar 

  • Kirigwi FM, Ginkel MV, Guedira GB, Gill BS, Paulsen GM, Fritz AK (2007) Makers associated with a QTL for given yield in wheat under drought. Mol Breed 20:401–413

    Article  CAS  Google Scholar 

  • Kosambi DD (1994) The estimation of a map distance from recombination values. Ann Eugenics 12(3):172–175

    Google Scholar 

  • Krishnamurthy LC, Johansen C, Ito O (1996) Genotypic variation in root system development and its implication for drought resistance in chickpea. In: Ito O, Johansen C, Adu-Gyamfi JJ, Katayama K, Kumar Rao JVDK, Rego TJ (eds) Roots and nitrogen in cropping systems of the semi-arid tropics. JIRCAS and ICRISAT, Hyderabad, pp 235–250

    Google Scholar 

  • Kumar A, Elston J (1992) Genotypic differences in leaf water relations between Brassica juncea and B. napus. Ann Bot 70:3–9

    Google Scholar 

  • Kumar A, Singh P, Singh DP, Singh H, Sharma HC (1984) Differences in osmoregulation in Brassica species. Ann Bot 54:537–541

    Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newberg LA (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1(2):174–181

    Article  CAS  PubMed  Google Scholar 

  • Longenverger ES, Smith CW, Thaxton PS, McMichael BL (2006) Development of a screening method for drought tolerance in cotton seedlings. Crop Sci 46:2104–2110

    Article  Google Scholar 

  • Mai-Kodomi Y, Singh BB, Myers O Jr, Yopp JH, Gibson PJ, Terao T (1999) Two mechanisms of drought tolerance in cowpea. Indian J Genet 59:309–316

    Google Scholar 

  • Mester DI, Ronin YI, Nevo E, Korol AB (2004) Fast and high precision algorithms for optimization in large-scale genomic problems. Comp Biol Chem 28:281–290

    Article  CAS  Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease- resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monneyeux P, Belhassen E (1996) The diversity of drought adaptation in the wide. Plant Growth Regul 20:85–92

    Article  Google Scholar 

  • Morgan JM (1984) Osmoregulation and water stress in higher plants. Annu Rev Plant Physiol 35:299–319

    Article  Google Scholar 

  • Morgan JM (1991) A gene controlling differences in osmoregulation in wheat. Aust J Plant Physiol 18:249–257

    Article  Google Scholar 

  • Morgan JM, Condon AC (1986) Water use, grain yield, and osmoregulation in wheat. Aust J Plant Physiol 13:523–532

    Article  Google Scholar 

  • Muchero W, Ehlers JD, Close TJ, Roberts PA (2009) Mapping QTL for drought stress-induced premature senescence and maturity in cowpea [Vigna unguiculata (L.) Walp]. Theor Appl Genet 118:849–863

    Article  CAS  PubMed  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  • Nagarajan S, Rane J (2000) Relationship of seedling traits with drought tolerance in spring wheat cultivars. Indian J Plant Physiol 5:264–270

    Google Scholar 

  • Navabi A, Mather DE, Bernier J, Spaner DM, Atlin GN (2009) QTL detection with bidirectional and unidirectional selective genotyping: marker-based and trait-based analyses. Theor Appl Genet 118:347–358

    Article  PubMed  Google Scholar 

  • Nayak SN, Zhu H, Varghese N et al (2010) Integration of novel SSR and gene-based SNP marker loci in the chickpea genetic map and establishment of new anchor points with Medicago truncatula genome. Theor Appl Genet 120:1415–1441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen TTT, Kluvea N, Chamreck V, Aarti A, Magpantay G, Millena ALM, Pathan MS, Nguyen HT (2004) Saturation mapping of QTL region and identification of putative candidate gene for drought tolerance in rice. Mol Genet Genomics 272:35–46

    Article  CAS  PubMed  Google Scholar 

  • Passioura JB (1986) Resistance to drought and salinity: avenues for improvement. Aust J Plant Physiol 13:191–201

    Article  Google Scholar 

  • Quarrie SA, Lazic-Jancic V, Kovacevic D, Steed A, Pekic S (1999) Bulked segregant analysis with molecular markers and its use for improving drought resistance in maize. J Exp Bot 50:1299–1306

    Article  CAS  Google Scholar 

  • Rubeena TPWJ, Ford R, Taylor PWJ (2003) Molecular mapping the lentil (Lens culinaris ssp. culinaris) genome. Theor Appl Genet 107:910–916

    Article  CAS  PubMed  Google Scholar 

  • Salunkhe AS, Poornima R, Prince SKJ, Kanagaraj P, Sheeba JA, Amudha K, Suji KK, Senthil A, Babu RC (2011) Fine mapping QTL for drought resistance traits in rice (Oryza sativa L.) using bulk segregant analysis. Mol Biotechnol 49:90–95

    Article  CAS  PubMed  Google Scholar 

  • Sanchez AC, Subudhi PK, Rosenow DT, Nguyen HT (2002) Mapping QTL association with drought resistance in sorghum (Sorghum bicolor L. Moench). Plant Mol Biol 48:713–726

    Article  CAS  PubMed  Google Scholar 

  • Schonfeld MA, Johnson RC, Carver BF, Mornhinweg DW (1988) Water relations in winter wheat as drought resistance indicators. Crop Sci 28:526–531

    Article  Google Scholar 

  • Sholihin, Hautea DM (2002) Molecular mapping of drought resistance in mungbean (Vigna radiata): QTL linked to drought resistance. J Biotechnol Pertan 7:55–61

    Google Scholar 

  • Simon L, Smalley TJ, Benton JJ, Lasseigne FT (1994) Aluminum toxicity in tomato: part I. Growth and mineral nutrition. J Plant Nutr 17:293–306

    Article  CAS  Google Scholar 

  • Sinclair TR, Ludlow MM (1985) Who taught plants thermodynamics? The unfulfilled potential of plant water potential. Aust J Plant Physiol 12:213–217

    Article  Google Scholar 

  • Singh BB, Mai-Kodomi Y, Terao T (1999) A simple screening method for drought tolerance in cowpea. Indian J Genet 59:211–220.

    Google Scholar 

  • Singh DP, Chaudhary BD, Singh P, Sharma HC, Karwasra SPS (1990a) Drought tolerance in oilseed Brassicas and chickpea. Directorate of Research, Haryana Agricultural University, Hisar, India.

  • Singh DP, Kumar A, Singh P, Chaudhary BD (1990b) Soil water use, seed yield, plant water relations and their inheritance in oilseed Brassicas under progressive soil moisture stress. Proceedings of the international congress of plant physiology, New Delhi, India, pp 841–848

    Google Scholar 

  • Singh BB, Mai-Kodomi Y, Terao T (1999) A simple screening method for drought tolerance in cowpea. Indian J Genet 59:211–220

    Google Scholar 

  • Singh D, Dikshit HK, Singh R (2013) A new phenotyping technique for screening for drought tolerance in lentil (Lens culinaris Medik.). Plant Breed 132(2):185–190

    Article  Google Scholar 

  • Singh D, Singh CK, Tomar RSS, Taunk J, Singh R, Maurya S, Chaturvedi AK, Pal M, Singh R, Dubey SK (2016) Molecular assortment of Lens species with different adaptations to drought conditions using SSR markers. PLoS ONE 11(1):e0147213. doi:10.1371/journal.pone.0147213

    Article  PubMed  PubMed Central  Google Scholar 

  • Subbarao GV, Johansen C, Slinkard AE, Nageswara Rao RC, Saxena NP, Chauhan YS (1995) Strategies for improving drought resistance in grain legumes. CRC Rev Plant Sci 14:469–523

    Article  Google Scholar 

  • Tanyolac B, Ozatay S, Kahraman A, Muehlbauer F (2009) Linkage mapping of lentil (Lens culinaris L.) genome using recombinant inbreed lines revealed by AFLP, ISSR, RAPD and some morphologic markers. J App Biol Sci 3(2):179–185

    Google Scholar 

  • Terzi R, Sağlam A, Kutlu N, Nar H, Kadıoğlu A (2010) Impact of soil drought stress on photochemical efficiency of photosystem II and antioxidant enzyme activities of Phaseolus vulgaris cultivars. Turk J Bot 34:1–10

    CAS  Google Scholar 

  • Tomar SMS, Kumar GT (2004) Seedling survivability as a selection criterion for drought tolerance in wheat. Plant Breed 123:392–394

    Article  Google Scholar 

  • Tullu A, Tar’an B, Warkentin T, Vandenberg A (2008) Construction of an intraspecific linkage map and QTL analysis for earliness and plant height in lentil. Crop Sci 48:2254–2264

    Article  Google Scholar 

  • Varshney RK, Paulob MJ, Grandod S, van Eeuwijkb FA, Keizerb LCP, Guod P, Ceccarellid S, Kiliane A, Baumd M, Granera A (2012) Genome wide association analyses for drought tolerance related traits in barley (Hordeum vulgare L.). Field Crops Res 126:171–180

    Article  Google Scholar 

  • Venuprasad R, Dalid CO, Valle MD, Zhao D, Espiritu M, Sta Cruz T, Amante M, Kumar A, Atlin GN (2009) Identification and characterization of large-effect quantitative trait loci for grain yield under lowland drought stress in rice using bulk-segregant analysis. Theor Appl Genet 120:177–190

    Article  PubMed  Google Scholar 

  • Vikrama P, Mallikarjuna Swamya BP, Dixit S, Ahmeda H, Sta Cruz MT, Singh AK, Yec G, Kumar A (2012) Bulk segregant analysis: “An effective approach for mapping consistent-effect drought grain yield QTLs in rice”. Field Crops Res 134:185–192

    Article  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Heredity 93(1):77–78

    Article  CAS  Google Scholar 

  • Wang B, Porter AH (2004) An AFLP-based interspecific linkage map of sympatric. Hybrid Colias Butterflies Genet 168(1):215–225

    CAS  Google Scholar 

  • Xu K, Chen S, Li T, Ma X, Liang X, Ding X, Liu H, Luo L (2015) OsGRAS23, a rice GRAS transcription factor gene, is involved in drought stress response through regulating expression of stress-responsive genes. BMC Plant Biol 15:141–153

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu LH, Wu SJ, Peng YS, Liu RN, Chen X, Zhao P, Xu P, Zhu JB, Jiao GL, Pei Y, Xiang CB (2015) Arabidopsis EDT1/HDG11 improves drought and salt tolerance in cotton and poplar and increases cotton yield in the field. Plant Biotechnol J. doi:10.1111/pbi.12358

    PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank the Head, Division of Genetics, Director and Joint Director Research and Incharge, National Phytotron Facility, Indian Agricultural Research Institute, New Delhi, India, for their encouragement and providing research facilities to carry out this research work. Dr. Balram Sharma, Ex-Head, Division of Genetics, Indian Agricultural Research Institute, New Delhi, is gratefully acknowledged for the critical review of the manuscript. This work was supported by the Department of Biotechnology, Ministry of Science and Technology, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dharmendra Singh.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, D., Singh, C.K., Taunk, J. et al. Genetic analysis and molecular mapping of seedling survival drought tolerance gene in lentil (Lens culinaris Medikus). Mol Breeding 36, 58 (2016). https://doi.org/10.1007/s11032-016-0474-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-016-0474-y

Keywords

Navigation