Skip to main content
Log in

Vascular expression of Populus LRR-RLK genes and the effects of their overexpression on wood formation

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Leucine-rich repeat receptor-like kinases (LRR-RLKs) constitute the largest subfamily of receptor-like kinases (RLKs) in land plants. Although some LRR-RLKs have been characterized as playing key roles in cell-to-cell communications, the physiological roles of most LRR-RLKs remain to be determined. In this study, we first screened the Populus trichocarpa expressed sequence tag and microarray database to look for PtLRR-RLKs differentially and preferentially expressed across the vascular cambial zone. The cell-specific expression of seven selected PtLRR-RLK genes was then verified by the GUS (β-glucuronidase) reporter gene assay. Nearly all of the seven types of plants transformed with PtLRR-RLKpro:GUS fusions showed a high level of transcription in the developing primary xylem and interfascicular cambium during the early stages of xylem differentiation. In stems undergoing secondary growth, the GUS activities driven by the seven PtLRR-RLK promoters were mainly associated with the cambial zone. These seven PtLRR-RLK genes were then individually overexpressed in hybrid poplars, and most transgenic poplars did not exhibit significant phenotypic changes. However, overexpression of PtLRR-RLK1, the putative ortholog of TDR/PXY in Arabidopsis, led to an ectopic accumulation of lignin in the pith along with an enlarged secondary xylem and increased lignin content without perceptible effect on secondary cell wall thickness, which made this transgene a likely candidate as a transducer of signals during plant secondary growth and wood formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agusti J, Lichtenberger R, Schwarz M, Nehlin L, Greb T (2011) Characterization of transcriptome remodeling during cambium formation identifies MOL1 and RUL1 as opposing regulators of secondary growth. PLoS Genet 7(2):e1001312

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Betsuyaku S, Takahashi F, Kinoshita A, Miwa H, Shinozaki K, Fukuda H, Sawa S (2011) Mitogen-activated protein kinase regulated by the CLAVATA receptors contributes to shoot apical meristem homeostasis. Plant Cell Physiol 52(1):14–29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55(4):611–622

    Article  PubMed  CAS  Google Scholar 

  • Ceserani T, Trofka A, Gandotra N, Nelson T (2009) VH1/BRL2 receptor-like kinase interacts with vascular-specific adaptor proteins VIT and VIK to influence leaf venation. Plant J 57(6):1000–1014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clark SE, Williams RW, Meyerowitz EM (1997) The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell 89:575–585

    Article  PubMed  CAS  Google Scholar 

  • Courtois-Moreau CL, Pesquet E, Sjodin A, Muniz L, Bollhoner B, Kaneda M, Samuels L, Jansson S, Tuominen H (2009) A unique program for cell death in xylem fibers of Populus stem. Plant J 58(2):260–274

    Article  PubMed  CAS  Google Scholar 

  • Dence C (1992) The determination of lignin. In: Lin S, Dence C (eds) Methods in lignin chemistry. Springer, Berlin, pp 33–62

    Chapter  Google Scholar 

  • DeYoung BJ, Bickle KL, Schrage KJ, Muskett P, Patel K, Clark SE (2006) The CLAVATA1-related BAM1, BAM2 and BAM3 receptor kinase-like proteins are required for meristem function in Arabidopsis. Plant J 45(1):1–16

    Article  PubMed  CAS  Google Scholar 

  • Dievart A, Clark SE (2004) LRR-containing receptors regulating plant development and defense. Development 131(2):251–261

    Article  PubMed  CAS  Google Scholar 

  • Etchells JP, Turner SR (2010a) Orientation of vascular cell divisions in Arabidopsis. Plant Signal Behav 5(6):730–732

    Article  PubMed  PubMed Central  Google Scholar 

  • Etchells JP, Turner SR (2010b) The PXY-CLE41 receptor ligand pair defines a multifunctional pathway that controls the rate and orientation of vascular cell division. Development 137(5):767–774

    Article  PubMed  CAS  Google Scholar 

  • Etchells JP, Mishra LS, Kumar M, Campbell L, Turner SR (2015) Wood formation in trees is increased by manipulating PXY-regulated cell division. Curr Biol 25(8):1050–1055

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Finn RD, Tate J, Mistry J, Coggill PC, Sammut SJ, Hotz HR, Ceric G, Forslund K, Eddy SR, Sonnhammer EL, Bateman A (2008) The Pfam protein families database. Nucleic Acids Res 36(Database issue):D281–D288

    PubMed  PubMed Central  CAS  Google Scholar 

  • Fisher K, Turner S (2007) PXY, a receptor-like kinase essential for maintaining polarity during plant vascular-tissue development. Curr Biol 17(12):1061–1066

    Article  PubMed  CAS  Google Scholar 

  • Fletcher LC, Brand U, Running MP, Simon R, Meyerowitz EM (1999) Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science 283(5409):1911–1914

    Article  PubMed  CAS  Google Scholar 

  • Hirakawa Y, Shinohara H, Kondo Y, Inoue A, Nakanomyo I, Ogawa M, Sawa S, Ohashi-Ito K, Matsubayashi Y, Fukuda H (2008) Non-cell-autonomous control of vascular stem cell fate by a CLE peptide/receptor system. Proc Natl Acad Sci USA 105(39):15208–15213

    Article  PubMed  PubMed Central  Google Scholar 

  • Hirakawa Y, Kondo Y, Fukuda H (2010) TDIF peptide signaling regulates vascular stem cell proliferation via the WOX4 homeobox gene in Arabidopsis. Plant Cell 22(8):2618–2629

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ito Y, Nakanomyo I, Motose H, Iwamoto K, Sawa S, Dohmae N, Fukuda H (2006) Dodeca-CLE peptides as suppressors of plant stem cell differentiation. Science 313(5788):842–845

    Article  PubMed  CAS  Google Scholar 

  • Jeong S, Trotochaud AE, Clark SE (1999) The Arabidopsis CLAVATA2 gene encodes a receptor-like protein required for the stability of the CLAVATA1 receptor-like kinase. Plant Cell 11(10):1925–1933

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Larson PR, Isebrands JG (1971) The plastochron index as applied to developmental studies of cottonwood. Can J For Res 1:1–11

    Article  Google Scholar 

  • Lehti-Shiu MD, Zou C, Hanada K, Shiu SH (2009) Evolutionary history and stress regulation of plant receptor-like kinase/pelle genes. Plant Physiol 150(1):12–26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leple JC, Brasileiro AC, Michel MF, Delmotte F, Jouanin L (1992) Transgenic poplars: expression of chimeric genes using four different constructs. Plant Cell Rep 11(3):137–141

    Article  PubMed  CAS  Google Scholar 

  • Letunic I, Copley RR, Schmidt S, Ciccarelli FD, Doerks T, Schultz J, Ponting CP, Bork P (2004) SMART 4.0: towards genomic data integration. Nucleic Acids Res 32(Database issue):D142–D144

    Article  PubMed  PubMed Central  Google Scholar 

  • Mayer KFX, Schoof H, Haecker A, Lenhard M, Jurgens G, Laux T (1998) Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95(6):805–815

    Article  PubMed  CAS  Google Scholar 

  • Miwa H, Kinoshita A, Fukuda H, Sawa S (2009) Plant meristems: CLAVATA3/ESR-related signalling in the shoot apical meristem and the root apical meristem. J Plant Res 122:31–39

    Article  PubMed  CAS  Google Scholar 

  • Moreau C, Aksenov N, Lorenzo MG, Segerman B, Funk C, Nilsson P, Jansson S, Tuominen H (2005) A genomic approach to investigate developmental cell death in woody tissues of Populus trees. Genome Biol 6(4):R34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Müller R, Bleckmann A, Simon R (2008) The receptor kinase CORYNE of Arabidopsis transmits the stem cell-limiting signal CLAVATA3 independently of CLAVATA1. Plant Cell 20(4):934–946

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nardmann J, Reisewitz P, Werr W (2009) Discrete shoot and root stem cell-promoting WUS/WOX5 functions are an evolutionary innovation of angiosperms. Mol Biol Evol 26(8):1745–1755

    Article  PubMed  CAS  Google Scholar 

  • Ohyama K, Shinohara H, Ogawa-Ohnishi M, Matsubayashi Y (2009) A glycopeptide regulating stem cell fate in Arabidopsis thaliana. Nat Chem Biol 5(8):578–580

    Article  PubMed  CAS  Google Scholar 

  • Pesquet E, Korolev AV, Calder G, Lloyd CW (2010) The microtubule-associated protein AtMAP70-5 regulates secondary wall patterning in Arabidopsis wood cells. Curr Biol 20(8):744–749

    Article  PubMed  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sarkar AK, Luijten M, Miyashima S, Lenhard M, Hashimoto T, Nakajima K, Scheres B, Heidstra R, Laux T (2007) Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. Nature 446(7137):811–814

    Article  PubMed  CAS  Google Scholar 

  • Sawa S, Kinoshita A, Nakanomyo I, Fukuda H (2006) CLV3/ESR-related (CLE) peptides as intercellular signaling molecules in plants. Chem Rec 6(6):303–310

    Article  PubMed  CAS  Google Scholar 

  • Schrader J, Moyle R, Bhalerao R, Hertzberg M, Lundeberg J, Nilsson P, Bhalerao RP (2004) Cambial meristem dormancy in trees involves extensive remodelling of the transcriptome. Plant J 40(2):173–187

    Article  PubMed  CAS  Google Scholar 

  • Schultz J, Milpetz F, Bork P, Ponting CP (1998) SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci USA 95(11):5857–5864

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shiu SH, Bleecker AB (2001) Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc Natl Acad Sci USA 98(19):10763–10768

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shiu SH, Karlowski WM, Pan R, Tzeng YH, Mayer KF, Li WH (2004) Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell 16(5):1220–1234

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stahl Y, Wink RH, Ingram GC, Simon R (2009) A signaling module controlling the stem cell niche in Arabidopsis root meristems. Curr Biol 19(11):909–914

    Article  PubMed  CAS  Google Scholar 

  • Sterky F, Bhalerao RR, Unneberg P, Segerman B, Nilsson P, Brunner AM, Charbonnel-Campaa L, Lindvall JJ, Tandre K, Strauss SH, Sundberg B, Gustafsson P, Uhlen M, Bhalerao RP, Nilsson O, Sandberg G, Karlsson J, Lundeberg J, Jansson S (2004) A Populus EST resource for plant functional genomics. Proc Natl Acad Sci USA 101(38):13951–13956

    Article  PubMed  PubMed Central  Google Scholar 

  • Strabala TJ, O’Donnell PJ, Smit AM, Ampomah-Dwamena C, Martin EJ, Netzler N, Nieuwenhuizen NJ, Quinn BD, Foote HC, Hudson KR (2006) Gain-of-function phenotypes of many CLAVATA3/ESR genes, including four new family members, correlate with tandem variations in the conserved CLAVATA3/ESR domain. Plant Physiol 140(4):1331–1344

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • ten Hove CA, Bochdanovits Z, Jansweijer VM, Koning FG, Berke L, Sanchez-Perez GF, Scheres B, Heidstra R (2011) Probing the roles of LRR RLK genes in Arabidopsis thaliana roots using a custom T-DNA insertion set. Plant Mol Biol 76(1–2):69–83

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tichtinsky G, Vanoosthuyse V, Cock JM, Gaude T (2003) Making inroads into plant receptor kinase signaling pathways. Trends Plant Sci 8(5):231–237

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Kucukoglu M, Zhang L, Chen P, Decker D, Nilsson O, Jones B, Sandberg G, Zheng B (2013) The Arabidopsis LRR-RLK, PXC1, is a regulator of secondary wall formation correlated with the TDIF-PXY/TDR-WOX4 signaling pathway. BMC Plant Biol 13:94

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National High Technology Research and Development Program (2011AA100200), National Program on Key Basic Research Project (2012CB114500) and National Natural Science Foundation (31270644).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiehua Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Rui Wang and Yan Ji have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 382 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Ji, Y., Wang, J. et al. Vascular expression of Populus LRR-RLK genes and the effects of their overexpression on wood formation. Mol Breeding 35, 220 (2015). https://doi.org/10.1007/s11032-015-0386-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-015-0386-2

Keywords

Navigation