Skip to main content

Advertisement

Log in

Rice genomics moves ahead

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Rice is one of the pillars of world-wide food security. Improvement in its yield is necessary to mitigate hunger of millions of people who depend on rice as a staple. Decoding rice genome sequence is expected to complement efforts being made to improve rice and its yield. The information about more than 32,000 genes, regulatory elements, repeat DNA, and DNA markers opens-up new horizons for molecular analysis and genetic enhancement not only for rice but also for other cereal crops. In the post-genomic era, significant progress has been made on defining transcriptome and epigenome as well as gene discovery by way of forward and reverse genetic approaches. Efforts are on to fill the gap between the genome and the phenotype. This may lead to regular practice of genomics-assisted breeding of rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agarwal P, Arora R, Ray S et al (2007) Genome-wide identification of C2H2 zinc-finger gene family in rice and their phylogeny and expression analysis. Plant Mol Biol 65:467–485

    CAS  PubMed  Google Scholar 

  • Armstead IP, Turner LB, Farrell M et al (2004) Synteny between a major heading-date QTL in perennial ryegrass (Lolium perenne L.) and the Hd3 heading-date locus in rice. Theor Appl Genet 108:822–828

    CAS  PubMed  Google Scholar 

  • Arora R, Agarwal P, Ray S et al (2007) MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress. BMC Genomics 8:242

    PubMed  Google Scholar 

  • Bennetzen JL (2000) Comparative sequence analysis of plant nuclear genomes: microcolinearity and its many exceptions. Plant Cell 12:1021–1029

    CAS  PubMed  Google Scholar 

  • Bennetzen JL, Ma J (2003) The genome colinearity of rice and other grasses on the basis of genome sequence analysis. Curr Opin Plant Biol 6:128–133

    CAS  PubMed  Google Scholar 

  • Bennetzen JL, Ramakrishana W (2002) Numerous small rearrangements of gene content, order and orientation differentiate grass genomes. Plant Mol Biol 48:821–827

    CAS  PubMed  Google Scholar 

  • Bennetzen JL, Coleman C, Liu R et al (2004) Consistent over-estimation of gene number in complex plant genomes. Curr Opin Plant Biol 7:732–736

    CAS  PubMed  Google Scholar 

  • Bolot S, Abrouk M, Masood-Quraishi U et al (2009) The ‘inner circle’ of the cereal genomes. Curr Opin Plant Biol 12:119–125

    CAS  PubMed  Google Scholar 

  • Bossolini E, Wicker T, Knobel PA et al (2007) Comparison of orthologous loci from small grass genomes Brachypodium and rice: implications for wheat genomics and grass genome annotation. Plant J 49:704–717

    CAS  PubMed  Google Scholar 

  • Brenner S, Johnson M, Bridgham J et al (2000) Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat Biotechnol 18:630–634

    CAS  PubMed  Google Scholar 

  • Brunner S, Keller B, Feuillet C (2003) A large rearrangement involving genes and low-copy DNA interrupts the microcolinearity between rice and barley at the Rph7 locus. Genetics 164:673–683

    CAS  PubMed  Google Scholar 

  • Cao X, Jacobsen SE (2002) Locus-specific control of asymmetric and CpNpG methylation by the DRM and CMT3 methyltransferase genes. Proc Natl Acad Sci USA 4:16491–16498

    Google Scholar 

  • Chan SW, Henderson IR, Jacobsen SE (2005) Gardening the genome: DNA methylation in Arabidopsis thaliana. Nat Rev Genet 6:351–360

    CAS  PubMed  Google Scholar 

  • Chen M, Presting G, Barbazuk WB et al (2002) An integrated physical and genetic map of the rice genome. Plant Cell 14:537–545

    PubMed  Google Scholar 

  • Cho Y-I, Park C-W, Kwon S-W et al (2004) Key DNA markers for predicting heterosis in F1 hybrids of japonica rice. Breed Sci 54:389–397

    CAS  Google Scholar 

  • Civán P, Svec M (2009) Genome-wide analysis of rice (Oryza sativa L. subsp. japonica) TATA box and Y Patch promoter elements. Genome 52:294–297

    PubMed  Google Scholar 

  • Collard BC, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc Lond B Biol Sci 363:557–572

    CAS  PubMed  Google Scholar 

  • Collard BCY, Cruz CMV, McNally KL et al (2008) Rice molecular breeding laboratories in the genomic era: current status and future considerations. Int J Plant Genomics, Article Id 524847

  • Cui X, Xu J, Asghar R et al (2005) Detecting single-feature polymorphisms using oligonucleotide arrays and robustified projection pursuit. Bioinformatics 21:3852–3858

    CAS  PubMed  Google Scholar 

  • Cui X, Xu XM, Mu DS et al (2008) Genomic analysis of rice microRNA promoters and clusters. Gene 431:61–66

    PubMed  Google Scholar 

  • Dardick C, Chen J, Richter T et al (2007) The rice protein kinase database for the rice kinome. Plant Physiol 143:579–586

    CAS  PubMed  Google Scholar 

  • Davierwala AP, Reddy AP, Lagu MD et al (2001) Marker assisted selection of bacterial blight resistance genes in rice. Biochem Genet 39:261–278

    CAS  PubMed  Google Scholar 

  • De Hoon M, Hayashizaki Y (2008) Deep cap analysis gene expression (CAGE): genome-wide identification of promoters, quantification of their expression, and network inference. Biotechniques 44:627–632

    PubMed  Google Scholar 

  • Devos KM (2005) Updating the ‘crop circle’. Curr Opin Plant Biol 8:155–162

    CAS  PubMed  Google Scholar 

  • Ding Y, Wang X, Su L et al (2007) SDG714, a histone H3K9 methyltransferase, is involved in Tos17 DNA methylation and transposition in rice. Plant Cell 19:9–22

    CAS  PubMed  Google Scholar 

  • Ding X, Hou X, Xie K et al (2009) Genome-wide identification of BURP domain-containing genes in rice reveals a gene family with diverse structures and responses to abiotic stresses. Planta 230:149–163

    CAS  PubMed  Google Scholar 

  • Droc G, Périn C, Fromentin S et al (2009) OryGenesDB (2008) update: database interoperability for functional genomics of rice. Nucleic Acids Res 37:D992–D995

    CAS  PubMed  Google Scholar 

  • Dunford RP, Yano M, Kurata N et al (2002) Comparative mapping of the barley Ppd-Hi photoperiod response gene region which lies close to a junction between two rice linkage segments. Genetics 161:825–834

    CAS  PubMed  Google Scholar 

  • Edwards JD, Janda J, Sweeney MT et al (2008) Development and evaluation of a high-throughput, low-cost genotyping platform based on oligonucleotide microarrays in rice. Plant Methods 4:13

    PubMed  Google Scholar 

  • Eisen JA, Fraser CM (2003) Phylogenomics: intersection of evolution and genomics. Science 300:1706–1707

    CAS  PubMed  Google Scholar 

  • Emery JF, Floyd SK, Alvarez J et al (2003) Radial patterning of Arabidopsis shoots by classIII HD-ZIP and KANADI genes. Curr Biol 13:1768–1774

    CAS  PubMed  Google Scholar 

  • Endo M, Tsuchiya T, Saito H et al (2004) Identification and molecular characterization of novel anther-specific genes in Oryza sativa L. by using cDNA microarray. Genes Genet Syst 79:213–226

    CAS  PubMed  Google Scholar 

  • Feltus FA, Wan J, Schulze SR et al (2004) An SNP resource for rice genetics and breeding based on subspecies indica and japonica genome alignments. Genome Res 14:1812–1819

    CAS  PubMed  Google Scholar 

  • Feschotte C, Jiang N, Wessler SR (2002) Plant transposable elements: where genetics meets genomics. Nat Rev Genet 3:329–341

    CAS  PubMed  Google Scholar 

  • Feuillet C, Keller B (1999) High gene density is conserved at syntenic loci of small and large grass genomes. Proc Natl Acad Sci USA 96:1342–1353

    Google Scholar 

  • Feuillet C, Keller B (2002) Comparative genomics in the grass family: molecular characterization of grass genome structure and evolution. Ann Bot 89:3–10

    CAS  PubMed  Google Scholar 

  • Finnegan EJ, Kovac KA (2000) Plant DNA methyltransferases. Plant Mol Biol 43:189–201

    CAS  PubMed  Google Scholar 

  • Fischle W, Wang Y, Allis CD (2003) Binary switches and modification cassettes in histone biology and beyond. Nature 425:475–479

    CAS  PubMed  Google Scholar 

  • Fitzgerald MA, McCouch SR, Hall RD (2009) Not just a grain of rice: the quest for quality. Trends Plant Sci 14:133–139

    CAS  PubMed  Google Scholar 

  • Fukuoka S, Inoue T, Miyao A et al (1994) Mapping of sequence-tagged sites in rice by single strand conformation polymorphism. DNA Res 1:271–277

    CAS  PubMed  Google Scholar 

  • Furutani I, Sukegawa S, Kyozuka J (2006) Genome-wide analysis of spatial and temporal gene expression in rice panicle. Plant J 46:503–511

    CAS  PubMed  Google Scholar 

  • Goff SA, Ricke D, Lan TH et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100

    CAS  PubMed  Google Scholar 

  • Gowda M, Jantasuriyarat C, Dean RA et al (2004) Robust-LongSAGE (RL-SAGE): a substantially improved LongSAGE method for gene discovery and transcriptome analysis. Plant Physiol 134:890–897

    CAS  PubMed  Google Scholar 

  • Griffiths-Jones S, Saini HK, Van Dongen S et al (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36:D154–D158

    CAS  PubMed  Google Scholar 

  • Gupta PK, Varshney RK (2000) The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica 113:163–185

    CAS  Google Scholar 

  • Haas BJ, Volfovsky N, Town CD et al (2002) Full-length messenger RNA sequences greatly improve genome annotation. Genome Biol 3:0029.1–0029.12

    Google Scholar 

  • Hackauf B, Rudd S, van der Voort JR et al (2008) Comparative mapping of DNA sequences in rye (Secale cereale L.) in relation to the rice genome. Theor Appl Genet 118:371–384

    PubMed  Google Scholar 

  • Han B, Zhang Q (2008) Rice genome research; current status and future perspectives. Plant Genome 1:71–76

    CAS  Google Scholar 

  • Han F, Kleinhofs A, Ullrich SE et al (1998) Synteny with rice-analysis of barley malting quality QTLs and RPG4 chromosomal regions. Genome 41:373–380

    CAS  Google Scholar 

  • Han F, Kilian A, Chen JP et al (1999) Sequence analysis of a rice BAC covering the syntenous barley Rpg1 region. Genome 42:1071–1076

    CAS  PubMed  Google Scholar 

  • Hazen SP, Kay SA (2003) Gene arrays are not just for measuring gene expression. Trends Plant Sci 8:413–416

    CAS  PubMed  Google Scholar 

  • Hirano K, Aya K, Hobo T et al (2008) Comprehensive transcriptome analysis of phytohormone biosynthesis and signaling genes in microspore/pollen and tapetum of rice. Plant Cell Physiol 49:1429–1450

    CAS  PubMed  Google Scholar 

  • Hirochika H, Sugimoto K, Otsuki Y et al (1996) Autonomous retrotransposons of rice involved in mutations induced by tissue culture. Proc Natl Acad Sci USA 93:7783–7788

    CAS  PubMed  Google Scholar 

  • Hirochika H, Guiderdoni E, An G et al (2004) Rice mutant resources for gene discovery. Plant Mol Biol 54:325–334

    CAS  PubMed  Google Scholar 

  • Hittalmani S, Parco A, Mew TV et al (2000) Fine mapping and DNA marker-assisted pyramiding of the three major genes for blast resistance in rice. Theor Appl Genet 100:1121–1128

    CAS  Google Scholar 

  • Hoecker N, Keller B, Muthreich N et al (2008) Comparison of maize (Zea mays L.) F1-hybrid and parental inbred line primary root transcriptomes suggests organ-specific patterns of nonadditive gene expression and conserved expression trends. Genetics 179:1275–1283

    CAS  PubMed  Google Scholar 

  • Huang X, Qian Q, Liu Z et al (2009) Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet 41:494–497

    CAS  PubMed  Google Scholar 

  • Imanishi T, Itoh T, Suzuki Y et al (2004) Integrative annotation of 21,037 human genes validated by full-length cDNA clones. PLoS Biol 2:856–875

    CAS  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Google Scholar 

  • Izawa T, Takahashi Y, Yano M (2003) Comparative biology comes into bloom: genomic and genetic comparison of flowering pathways in rice and Arabidopsis. Curr Opin Plant Biol 6:113–120

    CAS  PubMed  Google Scholar 

  • Jabbari K, Cruveiller S, Clay O et al (2004) The new genes of rice: a closer look. Trends Plant Sci 9:281–285

    CAS  PubMed  Google Scholar 

  • Jackson JP, Lindroth AM, Cao X et al (2002) Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 416:556–560

    CAS  PubMed  Google Scholar 

  • Jain S, Jain RK, McCouch SR (2004) Genetic analysis of Indian aromatic and quality rice (Oryza sativa L.) germplasm using panels of fluorescently-labeled microsatellite markers. Theor Appl Genet 109:965–977

    CAS  PubMed  Google Scholar 

  • Jain M, Nijhawan A, Arora R et al (2007) F-box proteins in rice. Genome-wide analysis, classification, temporal and spatial gene expression during panicle and seed development, and regulation by light and abiotic stress. Plant Physiol 143:1467–1483

    CAS  PubMed  Google Scholar 

  • Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080

    CAS  PubMed  Google Scholar 

  • Jiang N, Bao Z, Zhang X et al (2003) An active DNA transposon family in rice. Nature 421:163–167

    CAS  PubMed  Google Scholar 

  • Jiao Y, Tausta SL, Gandotra N et al (2009) A transcriptome atlas of rice cell types uncovers cellular, functional and developmental hierarchies. Nat Genet 41:258–263

    CAS  PubMed  Google Scholar 

  • Jongeneel CV, Delorenzi M, Iseli C et al (2005) An atlas of human gene expression from massively parallel signature sequencing (MPSS). Genome Res 15:1007–1014

    CAS  PubMed  Google Scholar 

  • Jung KH, An G, Ronald PC (2008) Towards a better bowl of rice: assigning function to tens of thousands of rice genes. Nat Rev Genet 9:91–101

    CAS  PubMed  Google Scholar 

  • Kapoor M, Arora R, Lama T et al (2008) Genome-wide identification, organization and phylogenetic analysis of Dicer-like, Argonaute and RNA-dependent RNA polymerase gene families and their expression analysis during reproductive development and stress in rice. BMC Genomics 9:451

    PubMed  Google Scholar 

  • Kathuria H, Giri J, Tyagi H et al (2007) Advances in transgenic rice biotechnology. Crit Rev Plant Sci 26:65–103

    CAS  Google Scholar 

  • Kawasaki S, Borchert C, Deyholos M et al (2001) Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 13:889–905

    CAS  PubMed  Google Scholar 

  • Kazazian HH Jr (2004) Mobile elements: drivers of genome evolution. Science 303:1626–1632

    CAS  PubMed  Google Scholar 

  • Keller B, Feuillet C (2000) Colinearity and gene density in grass genomes. Trends Plant Sci 5:246–251

    CAS  PubMed  Google Scholar 

  • Kikuchi S, Satoh K, Nagata T et al (2003) Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice. Science 301:376–379

    PubMed  Google Scholar 

  • Kikuchi S, Wang G-L, Li L (2007) Genome-wide RNA expression profile in rice. In: Upadhyaya N (ed) Rice functional genomics: challenges, progress and prospects. Springer, New York, pp 31–54

    Google Scholar 

  • Kim KM, Cho SK, Shin SH et al (2005) Analysis of differentially expressed transcripts of fungal elicitor and wound-treated wild rice (Oryza grandiglumis). J Plant Res 118:347–354

    CAS  PubMed  Google Scholar 

  • Krishnan A, Guiderdoni E, An G et al (2009) Mutant resources in rice for functional genomics of the grasses. Plant Physiol 149:165–170

    CAS  PubMed  Google Scholar 

  • Larmande P, Gay C, Lorieux M et al (2008) Oryza Tag Line, a phenotypic mutant database for the Genoplante rice insertion line library. Nucleic Acids Res 36:D1022–D1027

    CAS  PubMed  Google Scholar 

  • Leister D, Kurth J, Laurie DA et al (1998) Rapid reorganization of resistance gene homologues in cereal genomes. Proc Natl Acad Sci USA 95:370–375

    CAS  PubMed  Google Scholar 

  • Li L, Wang X, Xia M et al (2005) Tiling microarray analysis of rice chromosome 10 to identify the transcriptome and relate its expression to chromosomal architecture. Genome Biol 6:R52

    PubMed  Google Scholar 

  • Li L, Wang X, Stolc V et al (2006) Genome-wide transcription analyses in rice using tiling microarrays. Nat Genet 38:124–129

    CAS  PubMed  Google Scholar 

  • Li L, Wang X, Sasidharan R et al (2007) Global identification and characterization of transcriptionally active regions in the rice genome. PLoS ONE 2:e294

    PubMed  Google Scholar 

  • Li X, Wang X, He K et al (2008) High-resolution mapping of epigenetic modifications of the rice genome uncovers interplay between DNA methylation, histone methylation and gene expression. Plant Cell 20:259–276

    CAS  PubMed  Google Scholar 

  • Lindroth AM, Cao X, Jackson JP et al (2001) Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation. Science 292:2077–2080

    CAS  PubMed  Google Scholar 

  • Lister R, Gregory BD, Ecker JR (2009) Next is now: new technologies for sequencing of genomes, transcriptomes, and beyond. Curr Opin Plant Biol 12:107–118

    CAS  PubMed  Google Scholar 

  • Liu J, Hara C, Umeda M et al (1995) Analysis of randomly isolated cDNAs from developing endosperm of rice (Oryza sativa L.): evaluation of expressed sequence tags, and expression levels of mRNAs. Plant Mol Biol 29:685–689

    CAS  PubMed  Google Scholar 

  • Liu B, Li P, Li X et al (2005) Loss of function of OsDCL1 affects microRNA accumulation and causes developmental defects in rice. Plant Physiol 139:296–305

    CAS  PubMed  Google Scholar 

  • Liu B, Chen Z, Song X et al (2007) Oryza sativa Dicer-like4 reveals a key role for small interfering RNA silencing in plant development. Plant Cell 19:2705–2718

    CAS  PubMed  Google Scholar 

  • Liu Q, Zhang YC, Wang CY et al (2009) Expression analysis of phytohormone-regulated microRNAs in rice, implying their regulation roles in plant hormone signaling. FEBS Lett 583:723–728

    CAS  PubMed  Google Scholar 

  • Lu C, Jeong DH, Kulkarni K et al (2008a) Genome-wide analysis for discovery of rice microRNAs reveals natural antisense microRNAs (nat-miRNAs). Proc Natl Acad Sci USA 105:4951–4956

    CAS  PubMed  Google Scholar 

  • Lu T, Huang X, Zhu C et al (2008b) RICD: a rice indica cDNA database resource for rice functional genomics. BMC Plant Biol 8:118

    PubMed  Google Scholar 

  • Lu F, Ammiraju JS, Sanyal A et al (2009) Comparative sequence analysis of MONOCULM1-orthologous regions in 14 Oryza genomes. Proc Natl Acad Sci USA 106:2071–2076

    CAS  PubMed  Google Scholar 

  • Malagnac F, Bartee L, Bender J (2002) An Arabidopsis SET domain protein required for maintenance but not establishment of DNA methylation. EMBO J 21:6842–6852

    CAS  PubMed  Google Scholar 

  • Mathieu O, Reinders J, Caikovski M et al (2007) Transgenerational stability of the Arabidopsis epigenome is coordinated by CG methylation. Cell 130:851–862

    CAS  PubMed  Google Scholar 

  • Matsumoto T, Wu J, Antonio B et al (2008) Development in rice genome research based on accurate genome sequence. Int J Plant Genomics, Article Id 348621

  • Matsumura H, Bin Nasir KH, Yoshida K et al (2006) SuperSAGE array: the direct use of 26-base-pair transcript tags in oligonucleotide arrays. Nat Methods 3:469–474

    CAS  PubMed  Google Scholar 

  • Meins F Jr, Si-Ammour A, Blevins T et al (2005) RNA silencing systems and their relevance to plant development. Annu Rev Cell Dev Biol 21:297–318

    CAS  PubMed  Google Scholar 

  • Meyer S, Pospisil H, Scholten S (2007) Heterosis associated gene expression in maize embryos 6 days after fertilization exhibits additive, dominant and overdominant pattern. Plant Mol Biol 63:381–391

    CAS  PubMed  Google Scholar 

  • Mihara M, Itoh T, Izawa T (2009) SALAD database: a motif-based database o f protein annotations for plant comparative genomics. Nucleic Acids Res Database Issue

  • Miki D, Shimamoto K (2008) De novo DNA methylation induced by siRNA targeted to endogenous transcribed sequences is gene-specific and OsMet1-independent in rice. Plant J 56:539–549

    CAS  PubMed  Google Scholar 

  • Misra S, Crosby M, Mungall C et al (2002) Annotation of the Drosophila melanogaster euchromatic genome: a systematic review. Genome Biol 3:0083.1–0083.22

    Google Scholar 

  • Miyao A, Tanaka K, Murata K et al (2003) Target site specificity of the Tos17 retrotransposon shows a preference for insertion within genes and against insertion in retrotransposon-rich regions of the genome. Plant Cell 15:1771–1780

    PubMed  Google Scholar 

  • Monna L, Miyao A, Inoue T et al (1994) Determination of RAPD markers in rice and their conversion into sequence tagged sites (STSs) and STS-specific primers. DNA Res 1:139–148

    CAS  PubMed  Google Scholar 

  • Monna L, Ohta R, Masuda H et al (2006) Genome-wide searching of single-nucleotide polymorphisms among eight distantly and closely related rice cultivars (Oryza sativa L.) and a wild accession (Oryza rufipogon Griff.). DNA Res 13:43–51

    CAS  PubMed  Google Scholar 

  • Nagaraju J, Kathirvel M, Kumar RR et al (2002) Genetic analysis of traditional and evolved Basmati and non-Basmati rice varieties by using fluorescence-based ISSR-PCR and SSR markers. Proc Natl Acad Sci USA 99:5836–5841

    CAS  PubMed  Google Scholar 

  • Nagasaki H, Itoh J, Hayashi K et al (2007) The small interfering RNA production pathway is required for shoot meristem initiation in rice. Proc Natl Acad Sci USA 104:14867–14871

    CAS  PubMed  Google Scholar 

  • Nakano M, Nobuta K, Vemaraju K et al (2006) Plant MPSS databases: signature-based transcriptional resources for analyses of mRNA and small RNA. Nucleic Acids Res 34:D731–D735

    CAS  PubMed  Google Scholar 

  • Nakazaki T, Okumoto Y, Horibata A et al (2003) Mobilization of a transposon in the rice genome. Nature 421:170–172

    CAS  PubMed  Google Scholar 

  • Ngezahayo F, Xu C, Wang H et al (2009) Tissue culture-induced transpositional activity of mPing is correlated with cytosine methylation in rice. BMC Plant Mol Biol 9:91

    Google Scholar 

  • Nijhawan A, Jain M, Tyagi AK et al (2008) A genomic survey and gene expression analysis of basic leucine zipper (bZIP) transcription factor family in rice. Plant Physiol 146:333–350

    CAS  PubMed  Google Scholar 

  • Nobuta K, Venu RC, Lu C et al (2007) An expression atlas of rice mRNAs and small RNAs. Nat Biotechnol 25:473–477

    CAS  PubMed  Google Scholar 

  • Nonomura K, Morohoshi A, Nakano M et al (2007) A germ cell-specific gene of the ARGONAUTE family is essential for the progression of premeiotic mitosis and meiosis during sporogenesis in rice. Plant Cell 19:2583–2594

    CAS  PubMed  Google Scholar 

  • O’Donnell KA, Boeke JD (2007) Mighty Piwis defend the germline against genome intruders. Cell 129:37–44

    PubMed  Google Scholar 

  • Ouyang S, Zhu W, Hamilton J et al (2007) The TIGR rice genome annotation resource: improvements and new features. Nucleic Acids Res 35:D883–D887

    CAS  PubMed  Google Scholar 

  • Ouyang Y, Chen J, Xie W et al (2009) Comprehensive sequence and expression profile analysis of Hsp20 gene family in rice. Plant Mol Biol 70:341–357

    CAS  PubMed  Google Scholar 

  • Ozsolak F, Platt AR, Jones DR et al (2009) Direct RNA sequencing. Nature 461:814–818

    CAS  PubMed  Google Scholar 

  • Paterson AH, Bowers JE, Chapman BA (2004) Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc Natl Acad Sci USA 101:9903–9908

    CAS  PubMed  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    CAS  PubMed  Google Scholar 

  • Perez LM, Redona ED, Mendioro MS et al (2008) Introgression of Xa4, Xa7 and Xa21 for resistance to bacterial blight in thermosensitive genetic male sterile rice (Oryza sativa L.) for the development of two-line hybrids. Euphytica 164:627–636

    CAS  Google Scholar 

  • Picault N, Chaparro C, Piegu B et al (2009) Identification of an active LTR retrotransposon in rice. Plant J 58:754–765

    CAS  PubMed  Google Scholar 

  • Prigge MJ, Otsuga D, Alonso JM et al (2005) Class III homeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct roles in Arabidopsis development. Plant Cell 17:61–76

    CAS  PubMed  Google Scholar 

  • Rabbani MA, Maruyama K, Abe H et al (2003) Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol 133:1755–1767

    CAS  PubMed  Google Scholar 

  • Ray S, Agarwal P, Arora R et al (2007) Expression analysis of calcium-dependent protein kinase gene family during reproductive development and abiotic stress conditions in rice (Oryza sativa L. ssp. indica). Mol Genet Genomics 278:493–505

    CAS  PubMed  Google Scholar 

  • Reinartz J, Bruyns E, Lin JZ et al (2002) Massively parallel signature sequencing (MPSS) as a tool for in-depth quantitative gene expression profiling in all organisms. Brief Funct Genomics Proteomics 1:95–104

    CAS  Google Scholar 

  • Rensink WA, Buell CR (2005) Microarray expression profiling resources for plant genomics. Trends Plant Sci 10:603–609

    CAS  PubMed  Google Scholar 

  • Rice Annotation Project (2007) Curated genome annotation of Oryza sativa ssp. japonica and comparative genome analysis with Arabidopsis thaliana. Genome Res 17:175–183

    Google Scholar 

  • Rice Annotation Project (2008) The rice annotation project database (RAP-DB): 2008 update. Nucleic Acids Res 36:D1028–D1033

    Google Scholar 

  • Sakamoto T, Matsuoka M (2008) Identifying and exploiting grain yield genes in rice. Curr Opin Plant Biol 11:209–214

    CAS  PubMed  Google Scholar 

  • Salse J, Peigu B, Cooke R et al (2004) New in silico insight into the synteny between rice (Oryza saliva L.) and maize (Zea mays L.) highlights reshuffling and identifies new duplications in the rice genome. Plant J 38:396–409

    CAS  PubMed  Google Scholar 

  • Sanchez AC, Brar DS, Huang N et al (2000) Sequence tagged site marker-assisted selection for three blight resistant genes in rice. Crop Sci 40:792–797

    CAS  Google Scholar 

  • Sasaki T, Song J, Koga-Ban Y et al (1994) Toward cataloguing all rice genes: large-scale sequencing of randomly chosen rice cDNAs from a callus cDNA library. Plant J 6:615–624

    CAS  PubMed  Google Scholar 

  • Satoh K, Doi K, Nagata T et al (2007) Gene organization in rice revealed by full-length cDNA mapping and gene expression analysis through microarray. PLoS ONE 2:e1235

    PubMed  Google Scholar 

  • Schena M, Shalon D, Davis RW et al (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470

    CAS  PubMed  Google Scholar 

  • Schwab R, Ossowski S, Riester M et al (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18:1121–1133

    CAS  PubMed  Google Scholar 

  • Shen YJ, Jiang H, Jin JP et al (2004) Development of genome-wide DNA polymorphism database for map-based cloning of rice genes. Plant Physiol 135:1198–1205

    CAS  PubMed  Google Scholar 

  • Shim KS, Cho SK, Jeung JU et al (2004) Identification of fungal (Magnaporthe grisea) stress-induced genes in wild rice (Oryza minuta). Plant Cell Rep 22:599–607

    CAS  PubMed  Google Scholar 

  • Shimono M, Sugano S, Nakayama A et al (2007) Rice WRKY45 plays a crucial role in benzothiadiazole-inducible blast resistance. Plant Cell 19:2064–2076

    CAS  PubMed  Google Scholar 

  • Shirasawa K, Maeda H, Monna L et al (2007) The number of genes having different alleles between rice cultivars estimated by SNP analysis. Theor Appl Genet 115:1067–1074

    CAS  PubMed  Google Scholar 

  • Singh NK, Raghuvanshi S, Srivastava SK et al (2004) Sequence analysis of the long arm of rice chromosome 11 for rice-wheat synteny. Funct Integr Genomics 4:102–117

    CAS  PubMed  Google Scholar 

  • Singh NK, Dalal V, Batra K et al (2007) Single-copy genes define a conserved order between rice and wheat for understanding differences caused by duplication, deletion, and transposition of genes. Funct Integr Genomics 7:17–35

    CAS  PubMed  Google Scholar 

  • Skvortsov D, Abdueva D, Stitzer M et al (2007) Using expression arrays for copy number detection: an example from E. coli. BMC Bioinformatics 8:203

    PubMed  Google Scholar 

  • Soderlund C, Haller K, Pampanwar V et al (2006) MGOS: a resource for studying Magnaporthe grisea and Oryza sativa interactions. Mol Plant Microbe Interact 19:1055–1061

    CAS  PubMed  Google Scholar 

  • Song BK, Hein I, Druka A et al (2008) The 172-kb genomic region of the O. rufipogon yld1.1 locus: comparative sequence analysis with O. sativa ssp. japonica and O. sativa ssp. indica. Funct Integr Genomics 9:97–108

    PubMed  Google Scholar 

  • Stein LD, Mungall C, Shu S et al (2002) The generic genome browser: a building block for a model organism system database. Genome Res 12:1599–1610

    CAS  PubMed  Google Scholar 

  • Stolc V, Li L, Wang X et al (2005) A pilot study of transcription unit analysis in rice using oligonucleotide tiling-path microarray. Plant Mol Biol 59:137–149

    CAS  PubMed  Google Scholar 

  • Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:42–45

    Google Scholar 

  • Sunkar R, Girke T, Jain PK et al (2005) Cloning and characterization of microRNAs from rice. Plant Cell 17:1397–1411

    CAS  PubMed  Google Scholar 

  • Suwabe K, Suzuki G, Takahashi H et al (2008) Separated transcriptomes of male gametophyte and tapetum in rice: validity of a laser microdissection (LM) microarray. Plant Cell Physiol 49:1407–1416

    CAS  PubMed  Google Scholar 

  • Swanson-Wagner RA, Jia Y, DeCook R et al (2006) All possible modes of gene action are observed in a global comparison of gene expression in a maize F1 hybrid and its inbred parents. Proc Natl Acad Sci USA 103:6805–6810

    CAS  PubMed  Google Scholar 

  • Teerawanichpan P, Chandrasekharan MB, Jiang Y et al (2004) Characterization of two rice DNA methyltransferase genes and RNAi-mediated reactivation of a silenced transgene in rice callus. Planta 218:337–349

    CAS  PubMed  Google Scholar 

  • The Rice Chromosome 11 and 12 Sequencing Consortia (2005) The sequence of rice chromosomes 11 and 12, rich in disease resistance genes and recent gene duplications. BMC Biol 3:20

    Google Scholar 

  • Thongjuea S, Ruanjaichon V, Bruskiewich R et al (2009) RiceGeneThresher: a web-based application for mining genes underlying QTL in rice genome. Nucleic Acids Res 37:D996–D1000

    CAS  PubMed  Google Scholar 

  • Throude M, Bolot S, Bosio M et al (2009) Structure and expression analysis of rice paleo duplications. Nucleic Acid Res 37:1248–1259

    CAS  PubMed  Google Scholar 

  • Uchimiya H, Kidou S, Shimazaki T et al (1992) Random sequencing of cDNA libraries reveals a variety of expressed genes in cultured cells of rice (Oryza sativa L.). Plant J 2:1005–1009

    CAS  Google Scholar 

  • Vaucheret H (2006) Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes Dev 20:759–771

    CAS  PubMed  Google Scholar 

  • Vazquez F, Vaucheret H, Rajagopalan R et al (2004) Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. Mol Cell 16:69–79

    CAS  PubMed  Google Scholar 

  • Velculescu VE, Zhang L, Vogelstein B et al (1995) Serial analysis of gene expression. Science 270:484–487

    CAS  PubMed  Google Scholar 

  • Venu RC, Jia Y, Gowda M et al (2007) RL-SAGE and microarray analysis of the rice transcriptome after Rhizocotonia solani infection. Mol Genet Genomics 278:421–431

    CAS  PubMed  Google Scholar 

  • Vij S, Tyagi AK (2008) A20/AN1 zinc-finger domain-containing proteins in plants and animals represent common elements in stress response. Funct Integr Genomics 8:301–307

    CAS  PubMed  Google Scholar 

  • Vij S, Gupta V, Kumar D et al (2006) Decoding the rice genome. BioEssays 28:421–432

    CAS  PubMed  Google Scholar 

  • Vij S, Giri J, Dansana P et al (2008) The receptor-like cytoplasmic kinase (OsRLCK) gene family in rice: organization, phylogenetic relationship, and expression during development and stress. Mol Plant 1:732–750

    CAS  PubMed  Google Scholar 

  • Wang SM (2007) Understanding SAGE data. Trends Genet 23:42–50

    PubMed  Google Scholar 

  • Wang Z, Liang Y, Li C et al (2005) Microarray analysis of gene expression involved in anther development in rice (Oryza sativa L.). Plant Mol Biol 58:721–737

    CAS  PubMed  Google Scholar 

  • Wang J, Nakazaki T, Chen S et al (2009a) Identification and characterization of the erect-pose panicle gene EP conferring high grain yield in rice (Oryza sativa L.). Theor Appl Genet 119:85–91

    CAS  PubMed  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009b) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    CAS  PubMed  Google Scholar 

  • Warthmann N, Chen H, Ossowski S et al (2008) Highly specific gene silencing by artificial miRNAs in rice. PLoS One 3:e1829

    PubMed  Google Scholar 

  • Wei G, Tao Y, Liu G et al (2009) A transcriptomic analysis of superhybrid rice LYP9 and its parents. Proc Natl Acad Sci USA 106:7695–7701

    CAS  PubMed  Google Scholar 

  • Wortman JR, Haas BJ, Hannick LI et al (2003) Annotation of the Arabidopsis genome. Plant Physiol 132:461–468

    CAS  PubMed  Google Scholar 

  • Wu J, Maehara T, Shimokawa T et al (2002) A comprehensive rice transcript map containing 6591 expressed sequence tag sites. Plant Cell 14:525–535

    CAS  PubMed  Google Scholar 

  • Xiao W, Custard KD, Brown RC et al (2006) DNA methylation is critical for Arabidopsis embryogenesis and seed viability. Plant Cell 18:805–814

    CAS  PubMed  Google Scholar 

  • Xu Y, Beachell H, McCouch SR (2004) A marker-based approach to broadening the genetic base of rice in the USA. Crop Sci 44:1947–1959

    Article  Google Scholar 

  • Yamaguchi T, Nakayama K, Hayashi T et al (2004) cDNA microarray analysis of rice anther genes under chilling stress at the microsporogenesis stage revealed two genes with DNA transposon Castaway in the 5-flanking regions. Biosci Biotechnol Biochem 68:1315–1323

    CAS  PubMed  Google Scholar 

  • Yamakawa H, Hirose T, Kuroda M et al (2007) Comprehensive expression profiling of rice grain filling-related genes under high temperature using DNA microarray. Plant Physiol 144:258–277

    CAS  PubMed  Google Scholar 

  • Yamamoto K, Sasaki T (1997) Large-scale EST sequencing in rice. Plant Mol Biol 35:135–144

    CAS  PubMed  Google Scholar 

  • Yamauchi T, Moritoh S, Johzuka-Hisatomi Y et al (2008) Alternative splicing of the rice OsMET1 genes encoding maintenance DNA methyltransferase. J Plant Physiol 165:1774–1782

    CAS  PubMed  Google Scholar 

  • Yamazaki M, Tsugava H, Miyao A et al (2001) The rice retrotransposon Tos17 prefers low-copy number sequences as integration targets. Mol Genet Genomics 265:336–344

    CAS  PubMed  Google Scholar 

  • Yang GX, Jan A, Shen SH et al (2004) Microarray analysis of brassinosteroids- and gibberellin-regulated gene expression in rice seedlings. Mol Genet Genomics 271:468–478

    CAS  PubMed  Google Scholar 

  • Yang Z, Gao Q, Sun C et al (2009) Molecular evolution and functional divergence of HAK potassium transporter gene family in rice (Oryza sativa L.). J Genet Genomics 36:161–172

    CAS  PubMed  Google Scholar 

  • Yazaki J, Kishimoto N, Nakamura K et al (2000) Embarking on rice functional genomics via cDNA microarray: use of 3′ UTR probes for specific gene expression analysis. DNA Res 7:367–370

    CAS  PubMed  Google Scholar 

  • Yazaki J, Kishimoto N, Nagata Y et al (2003) Genomics approach to abscisic acid- and gibberellin-responsive genes in rice. DNA Res 10:249–261

    CAS  PubMed  Google Scholar 

  • Yu J, Hu S, Wang J et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92

    CAS  PubMed  Google Scholar 

  • Yu J, Wang J, Lin W et al (2005) The genomes of Oryza sativa: a history of duplications. PLoS Biol 3:e38

    PubMed  Google Scholar 

  • Yuan Q, Ouyang S, Wang A et al (2005) The Institute for Genomic Research Osa1 rice genome annotation database. Plant Physiol 138:18–26

    CAS  PubMed  Google Scholar 

  • Zhang J, Li X, Jiang G et al (2006a) Pyramiding of Xa7 and Xa21 for the improvement of disease resistance to bacterial blight in hybrid rice. Plant Breed 125:600–605

    CAS  Google Scholar 

  • Zhang B, Pan X, Cannon CH et al (2006b) Conservation and divergence of plant microRNA genes. Plant J 46:243–259

    CAS  PubMed  Google Scholar 

  • Zhang Q, Li J, Xue Y et al (2008) Rice 2020; a call for international coordinated effort in rice functional genomics. Mol Plant 1:715–719

    CAS  PubMed  Google Scholar 

  • Zhao W, Wang J, He X et al (2004) BGI-RIS: an integrated information resource and comparative analysis workbench for rice genomics. Nucleic Acids Res 32:D377–D382

    CAS  PubMed  Google Scholar 

  • Zhao B, Ge L, Liang K et al (2009) Members of miR-169 family are induced by high salinity and transiently inhibit the NF-YA transcription factor. BMC Mol Biol 10:29

    PubMed  Google Scholar 

  • Zhou J, Wang X, Jiao Y et al (2007) Global genome expression analysis of rice in response to drought and high-salinity stresses in shoot, flag leaf, and panicle. Plant Mol Biol 63:591–608

    CAS  PubMed  Google Scholar 

  • Zhu Q-H, Spriggs A, Matthew L et al (2008) A diverse set of microRNAs and microRNA-like small RNAs in developing rice grains. Genome Res 18:1456–1465

    CAS  PubMed  Google Scholar 

  • Zwick MS, Islam-Faridi MN, Czeschin DG et al (1998) Physical mapping of the liguleless linkage group in Sorghum bicolor using rice RFLP-selected sorghum BACs. Genetics 148:1983–1992

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Our research is supported by DBT, DST and UGC, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhilesh Tyagi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raghuvanshi, S., Kapoor, M., Tyagi, S. et al. Rice genomics moves ahead. Mol Breeding 26, 257–273 (2010). https://doi.org/10.1007/s11032-009-9367-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-009-9367-7

Keywords

Navigation