Skip to main content
Log in

An insight on medicinal attributes of 1,2,3‐ and 1,2,4‐triazole derivatives as alpha-amylase and alpha-glucosidase inhibitors

  • Short Review
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Diabetes Mellitus (DM) is the globe’s common leading disease which is caused by high consumption of glucose. DM compiles groups of metabolic disorders which are characterized by inadequate secretion of insulin from pancreas, resulting in hyperglycemia condition. Many enzymes play a vital role in the metabolism of carbohydrate known as α-amylase and α-glucosidase which is calcium metalloenzyme that leads to breakdown of complex polysaccharides into glucose. To tackle this problem, search for newer antidiabetic drugs is the utmost need for the treatment and/or management of increasing diabetic burden. The inhibition of α-amylase and α-glucosidase is one of the effective therapeutic approaches for the development of antidiabetic therapeutics. The exhaustive literature survey has shown the importance of medicinally privileged triazole specifically 1,2,3‐triazol and 1,2,4‐triazoles scaffold tethered, fused and/or clubbed with other heterocyclic rings structures as promising agents for designing and development of novel antidiabetic therapeutics. Molecular hybrids namely pyridazine-triazole, pyrazoline-triazole, benzothiazole-triazole, benzimidazole‐triazole, curcumin-triazole, (bis)coumarin-triazole, acridine-9-carboxamide linked triazole, quinazolinone-triazole, xanthone-triazole, thiazolo-triazole, thiosemicarbazide-triazole, and indole clubbed-triazole are few examples which have shown promising antidiabetic activity by inhibiting α-amylase and/or α-glucosidase. The present review summarizes the structure–activity relationship (SAR), enzyme inhibitory activity including IC50 values, percentage inhibition, kinetic studies, molecular docking studies, and patents filed of the both scaffolds as alpha-amylase and alpha-glucosidase inhibitors, which may be used for further development of potent inhibitors against both enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40

Similar content being viewed by others

References

  1. Kaul K, Tarr JM, Ahmad SI, Kohner EM, Chibber RJD (2012) Introduction to diabetes mellitus. Adv Exp Med Biol 771:1–11

    PubMed  Google Scholar 

  2. Taylor R (2012) nsulin resistance and type 2 diabetes. Diabetes 61(4):778–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Henry RR, Wiest-Kent TA, Scheaffer L, Kolterman OG, Olefsky JM (1986) Metabolic consequences of very-low-calorie diet therapy in obese non-insulin-dependent diabetic and nondiabetic subjects. Diabetes 35(2):155–164

    Article  CAS  PubMed  Google Scholar 

  4. Porte D Jr (2001) Clinical importance of insulin secretion and its interaction with insulin resistance in the treatment of type 2 diabetes mellitus and its complications. Diabetes Metab Res Rev 17(3):181–188

    Article  CAS  PubMed  Google Scholar 

  5. Azimi F, Azizian H, Najafi M, Hassanzadeh F, Sadeghi-Aliabadi H, Ghasemi JB, Ali Faramarzi M, Mojtabavi S, Larijani B, Saghaei L, Mahdavi M (2021) Design and synthesis of novel quinazolinone-pyrazole derivatives as potential α-glucosidase inhibitors: structure-activity relationship, molecular modeling and kinetic study. Bioorg Chem 114:105127

    Article  CAS  PubMed  Google Scholar 

  6. Jendle J, Nauck MA, Matthews DR, Frid A, Hermansen K, Düring M, Zdravkovic M, Strauss BJ, Garber AJ (2009) LEAD-2 and LEAD-3 Study Groups. Weight loss with liraglutide, a once-daily human glucagon-like peptide-1 analogue for type 2 diabetes treatment as monotherapy or added to metformin, is primarily as a result of a reduction in fat tissue. Diabetes Obes Metab 11(12):1163–72.

  7. Balistreri CR, Caruso C, Candore GJ (2010) The role of adipose tissue and adipokines in obesity-related inflammatory diseases. Mediators Inflamm 2010:802078

    Article  PubMed  PubMed Central  Google Scholar 

  8. Malik VS, Willet WC, Hu FB (2020) Nearly a decade on trends, risk factors and policy implications in global obesity. Nat Rev Endocrinol 16:615–616

    Article  PubMed  PubMed Central  Google Scholar 

  9. Billings LK, Florez JC (2010) The genetics of type 2 diabetes: what have we learned from GWAS? Ann N Y Acad Sci 1212:59–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pollex RL, Hegele RA (2006) Genetic determinants of the metabolic syndrome. Nat Clin Pract Cardiovasc Med 3(9):482–489

    Article  CAS  PubMed  Google Scholar 

  11. Karslioglu French E, Donihi AC, Korytkowski MT (2019) Diabetic ketoacidosis and hyperosmolar hyperglycemic syndrome: review of acute decompensated diabetes in adult patients. BMJ 365:l1114

    Article  PubMed  Google Scholar 

  12. Galicia-Garcia U, Benito-Vicente A, Jebari S, Larrea-Sebal A, Siddiqi H, Uribe KB, Ostolaza H, Martín C (2020) Pathophysiology of type 2 diabetes mellitus. Int J Mol Sci 21(17):6275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Maury E, Brichard SM (2010) Adipokine dysregulation, adipose tissue inflammation and metabolic syndrome. Mol Cell Endocrinol 314(1):1–16

    Article  CAS  PubMed  Google Scholar 

  14. Gao X, Cai X, Yang W, Chen Y, Han X, Ji L (2018) Meta-analysis and critical review on the efficacy and safety of alpha-glucosidase inhibitors in Asian and non-Asian populations. J Diabetes Investig 9(2):321–331

    Article  CAS  PubMed  Google Scholar 

  15. Zala AR, Naik HN, Ahmad I, Patel H, Jauhari S, Kumari P (2023) Design and synthesis of novel 1,2,3-triazole linked hybrids: molecular docking, MD simulation, and their antidiabetic efficacy as α-Amylase inhibitors. J Mol Struct 1285:135493

    Article  CAS  Google Scholar 

  16. Jagadeesan S, Karpagam S, Noor A, Basu R (2023) Indole 3-heterocyclic derivative: a potential antioxidant, antidiabetic agent and their docking study on alpha amylase. J Mol Struct 1291:136027

    Article  CAS  Google Scholar 

  17. Khouzani MA, Mogharabi M, Faramarzi MA, Mojtabavi S, Azizian H, Mahdavi M, Hashemi SM (2023) Development of coumarin tagged 1,2,3-triazole derivatives targeting α-glucosidase inhibition: synthetic modification, biological evaluation, kinetic and in silico studies. J Mol Struct 1282:135194

    Article  CAS  Google Scholar 

  18. He M, Li YJ, Shao J, Fu C, Li YS, Cui ZN (2023) 2,5-Disubstituted furan derivatives containing imidazole, triazole or tetrazole moiety as potent α-glucosidase inhibitors. Bioorg Chem 131:106298

    Article  CAS  PubMed  Google Scholar 

  19. Asif HMA, Kamal S, Rehman AU, Bibi I, AlMasoud N, Alomar TS, Iqbal M (2023) Synthesis characterization and evaluation of novel triazole based analogs as a acetylcholinesterase and α-glucosidase inhibitors. Arab J Chem 16(4):104626

    Article  Google Scholar 

  20. Van de Laar FA, Lucassen PL, Akkermans RP, Van de Lisdonk EH, Rutten GE, Van Weel C (2005) Alpha-glucosidase inhibitors for type 2 diabetes mellitus. Cochrane Database Syst Rev 2005(2):CD003639

    PubMed  PubMed Central  Google Scholar 

  21. Van de Laar FA, Lucassen PL, Akkermans RP, Van de Lisdonk EH, De Grauw WJ (2006) Alpha-glucosidase inhibitors for people with impaired glucose tolerance or impaired fasting blood glucose. Cochrane Database Syst Rev 4:CD005061

    Google Scholar 

  22. Serra-Barcellona C, Habib NC, Honoré SM, Sánchez SS, Genta SB (2017) Enhydrin regulates postprandial hyperglycemia in diabetic rats by inhibition of α-glucosidase activity. Plant Foods Hum Nutr 72(2):156–160

    Article  CAS  PubMed  Google Scholar 

  23. Yang CY, Yen YY, Hung KC et al (2019) Inhibitory effects of pu-erh tea on alpha glucosidase and alpha amylase: a systemic review. Nutr Diabetes 9(1):1–6

    Article  Google Scholar 

  24. Lacroix IM, Li-Chan EC (2014) Overview of food products and dietary constituents with antidiabetic properties and their putative mechanisms of action: a natural approach to complement pharmacotherapy in the management of diabetes. Mol Nutr Food Res 58(1):61–78

    Article  CAS  PubMed  Google Scholar 

  25. Ghani U (2015) Re-exploring promising α-glucosidase inhibitors for potential development into oral anti-diabetic drugs: finding needle in the haystack. Eur J Med Chem 103:133–162

    Article  CAS  PubMed  Google Scholar 

  26. Funke I, Melzig MFJRBdF (2006) Traditionally used plants in diabetes therapy: phytotherapeutics as inhibitors of alpha-amylase activity. Rev Bras Farmacogn 16(1):1–5

    Article  Google Scholar 

  27. Babu SG, Karvembu R (2013) Copper based nanoparticles-catalyzed organic transformations. Catal Surv Asia 17(3):156–176

    Article  CAS  Google Scholar 

  28. Hou J, Liu X, Shen J, Zhao G, Wang PG (2012) The impact of click chemistry in medicinal chemistry. Expert Opin Drug Discov 7(6):489–501

    Article  CAS  PubMed  Google Scholar 

  29. Sarigol D, Uzgoren-Baran A, Tel BC, Somuncuoglu EI, Kazkayasi I, Ozadali-Sari K, Unsal-Tan O, Okay G, Ertan M, Tozkoparan B (2015) Novel thiazolo[3,2-b]-1,2,4-triazoles derived from naproxen with analgesic/anti-inflammatory properties: Synthesis, biological evaluation and molecular modeling studies. Bioorg Med Chem 23(10):2518–2528

    Article  CAS  PubMed  Google Scholar 

  30. Hichri F, Omri A, Hossan ASM, Ben Jannet H (2019) Alpha-glucosidase and amylase inhibitory effects of Eruca vesicaria subsp. longirostris essential oils: synthesis of new 1,2,4-triazole-thiol derivatives and 1,3,4-thiadiazole with potential inhibitory activity. Pharm Biol 57(1):564–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hameed S, Seraj F, Rafique R, Chigurupati S, Wadood A, Rehman AU, Venugopal V, Salar U, Taha M, Khan KM (2019) Synthesis of benzotriazoles derivatives and their dual potential as α-amylase and α-glucosidase inhibitors in vitro: Structure-activity relationship, molecular docking, and kinetic studies. Eur J Med Chem 1(183):111677

    Article  Google Scholar 

  32. Balba M, El-Hady NA, Taha N, Rezki N, El Ashry SH (2011) Inhibition of α-glucosidase and α-amylase by diaryl derivatives of imidazole-thione and 1,2,4-triazole-thiol. Eur J Med Chem 46(6):2596–2601

    Article  CAS  PubMed  Google Scholar 

  33. Gong Z, Peng Y, Qiu J, Cao A, Wang G, Peng Z (2017) Synthesis, in vitro α-glucosidase inhibitory activity and molecular docking studies of novel benzothiazole-triazole derivatives. Molecules 22(9):1555

    Article  PubMed  PubMed Central  Google Scholar 

  34. Saeedi M, Mohammadi-Khanaposhtani M, Asgari MS, Eghbalnejad N, Imanparast S, Faramarzi MA et al (2019) Design, synthesis, in vitro, and in silico studies of novel diarylimidazole-1, 2, 3-triazole hybrids as potent α-glucosidase inhibitors. Bioorg Med Chem 27(23):115148

    Article  CAS  PubMed  Google Scholar 

  35. Yeye EO, Kanwal, Mohammed Khan K, Chigurupati S, Wadood A, Ur Rehman A, Perveen S, KannanMaharajan M, Shamim S, Hameed S, Aboaba SA, Taha M (2020) Syntheses, in vitro α-amylase and α-glucosidase dual inhibitory activities of 4-amino-1,2,4-triazole derivatives their molecular docking and kinetic studies. Bioorg Med Chem 28(11):115467

  36. Avula SK, Khan A, Rehman NU, Anwar MU, Al-Abri Z, Wadood A, Riaz M, Csuk R, Al-Harrasi A (2018) Synthesis of 1H–1,2,3-triazole derivatives as new α-glucosidase inhibitors and their molecular docking studies. Bioorg Chem 81:98–106

    Article  CAS  PubMed  Google Scholar 

  37. Menteşe E, Baltaş N, Bekircan O (2019) Synthesis and kinetics studies of N′-(2-(3, 5-disubstituted-4H-1, 2, 4-triazol-4-yl) acetyl)-6/7/8-substituted-2-oxo-2H-chromen-3-carbohydrazide derivatives as potent antidiabetic agents. Arch Pharm 352(12):1900227

    Article  Google Scholar 

  38. Deswal L, Verma V, Kumar D, Kaushik CP, Kumar A, Deswal Y, Punia S (2020) Synthesis and antidiabetic evaluation of benzimidazole-tethered 1, 2, 3-triazoles. Arch Pharm 353(9):2000090

    Article  CAS  Google Scholar 

  39. Channar PA, Saeed A, Larik FA, Rashid S, Iqbal Q, Rozi M, Younis S, Mahar J (2017) Design and synthesis of 2, 6-di (substituted phenyl) thiazolo [3, 2-b]-1, 2, 4-triazoles as α-glucosidase and α-amylase inhibitors, co-relative Pharmacokinetics and 3D QSAR and risk analysis. Biomed Pharmacother 94:499–513

    Article  CAS  PubMed  Google Scholar 

  40. El Bakri Y, Marmouzi I, El Jemli M, Anouar EH, Karthikeyan S, Harmaoui A, Faouzi MEA, Mague JT, Essassi EM (2019) Synthesis, biological activity and molecular modeling of a new series of condensed 1,2,4-triazoles. Bioorg Chem 92:103193

    Article  PubMed  Google Scholar 

  41. Bakherad Z, Mohammadi-Khanaposhtani M, Sadeghi-Aliabadi H, Rezaei S, Fassihi A, Bakherad M, Rastegar H, Biglar M, Saghaie L, Larijani B, Mahdavi M (2019) New thiosemicarbazide-1, 2, 3-triazole hybrids as potent α-glucosidase inhibitors: design, synthesis, and biological evaluation. J Mol Struct 1192:192–200

    Article  CAS  Google Scholar 

  42. Jabeen F, Shehzadi SA, Fatmi MQ, Shaheen S, Iqbal L, Afza N, Panda SS, Ansari FL (2016) Synthesis, in vitro and computational studies of 1, 4-disubstituted 1, 2, 3-triazoles as potential α-glucosidase inhibitors. Bioorg Med Chem Lett 26(3):1029–1038

    Article  CAS  PubMed  Google Scholar 

  43. Asgari MS, Mohammadi-Khanaposhtani M, Sharafi Z, Faramarzi MA, Rastegar H, Nasli Esfahani E, Bandarian F, Rashidi PR, Rahimi R, Biglar M, Mahdavi M (2021) Larijani B (2021) Design and synthesis of 4, 5-diphenyl-imidazol-1, 2, 3-triazole hybrids as new anti-diabetic agents: in vitro α-glucosidase inhibition, kinetic and docking studies. Mol Diversity 25(2):877–888

    Article  CAS  Google Scholar 

  44. Guo L, Liu J, Nargund RP, Pasternak A, Yang L, Ye Z (2011) Triazole beta carboline derivatives as anti-diabetic agents. (WIPO Patent No. WO2010051177A1) https://patents.google.com/patent/WO2010051177A1/en.

  45. Allegretti P, Choi S-K, Gendron R, Fatheree PR, Jendza K, McKinnell RM, et al. (2013) Dual-acting benzyl triazole antihypertensive agents having angiotensin II type receptor antagonist activity and neprilysin-inhibition activity. (WIPO Patent No. WO2008133896A3) https://patents.google.com/patent/WO2008133896A3/en.

  46. Waddell ST, Santorelli GM, Maletic MM, Leeman AH, Gu X, Graham DW, Balkovec JM, Aster SD (2009) Triazole derivatives as inhibitors of 11-β-hydroxysteroid dehydrogenase-1. (WIPO Patent No. WO2004058730A3) https://patents.google.com/patent/WO2004058730A3/en.

  47. Barys M, Ciunik Z, Drabent K, Szponar B, Gamian A (2009) The novel chiral triazole derivatives, synthesis and application thereof. (WIPO Patent No. WO2014167009A1) https://patents.google.com/patent/WO2014167009A1/en

  48. Imamura M, Murakami T, Shiraki R, Ikegai K, Sugane T, Iwasaki F, Kurosaki E, Tomiyama H, Noda A, Kitta K, Kobayashi Y (2007) C-glycoside derivatives and salts thereof. (U.S. Patent No. US7977466B2) https://patents.google.com/patent/US7977466B2/en.

  49. Khouzani MA, Mogharabi M, Faramarzi MA, Mojtabavi S, Azizian H, Mahdavi M et al (2023) Development of coumarin tagged 1, 2, 3-triazole derivatives targeting α-glucosidase inhibition: Synthetic modification, biological evaluation, kinetic and in silico studies. J Mol Struct 1282:135194

    Article  CAS  Google Scholar 

  50. Moghimi S, Salarinejad S, Toolabi M, Firoozpour L, Ebrahimi SES, Safari F, Madani-Qamsari F, Mojtabavi S, Faramarzi MA, Karima S, Pakrad R, Foroumadi A (2021) Synthesis, in-vitro evaluation, molecular docking, and kinetic studies of pyridazine-triazole hybrid system as novel α-glucosidase inhibitors. Bioorg Chem 109:104670

    Article  CAS  PubMed  Google Scholar 

  51. Yavari A, Mohammadi-Khanaposhtani M, Moradi S, Bahadorikhalili S, Pourbagher R, Jafari N et al (2021) α-Glucosidase and α-amylase inhibition, molecular modeling and pharmacokinetic studies of new quinazolinone-1, 2, 3-triazole-acetamide derivatives. Med Chem Res 30(3):702–711

    Article  CAS  Google Scholar 

  52. Şahin İ, Çeşme M, Özgeriş FB, Güngör F, Tümer F (2021) Design and synthesis of 1, 4-disubstituted 1, 2, 3-triazoles: biological evaluation, in silico molecular docking and ADME screening. J Mol Struct 1247:131344

    Article  Google Scholar 

  53. Shareghi-Boroujeni D, Iraji A, Mojtabavi S, Faramarzi MA, Akbarzadeh T, Saeedi M (2021) Synthesis, in vitro evaluation, and molecular docking studies of novel hydrazineylideneindolinone linked to phenoxymethyl-1, 2, 3-triazole derivatives as potential α-glucosidase inhibitors. Bioorg Chem 111:104869

    Article  CAS  PubMed  Google Scholar 

  54. Shukla AK, Shrivash MK, Pandey A, Pandey J (2021) Synthesis, in vitro and computational studies of novel glycosyl-1, 2, 3–1H-triazolyl methyl benzamide derivatives as potential α-glucosidase inhibitory activity. Bioorg Chem 109:104687

    Article  CAS  PubMed  Google Scholar 

  55. Sepehri N, Azizian H, Ghadimi R, Abedinifar F, Mojtabavi S, Faramarzi MA, Moghadamnia AA, Zabihi E, Mohebbi G, Larijani B, Hamedifar H, Mohammadi-Khanaposhtani M, Mahdavi M (2021) New 4, 5-diphenylimidazole-acetamide-1, 2, 3-triazole hybrids as potent α-glucosidase inhibitors: synthesis, in vitro and in silico enzymatic and toxicity evaluations. Monatsh Chem 0152:679–693

    Article  CAS  Google Scholar 

  56. Sepehri N, Asemanipoor N, Mousavianfard SA, Hoseini S, Faramarzi MA, Adib M, Biglar M, Larijani B, Hamedifar H, Mohammadi-Khanaposhtani M, Mahdavi M (2020) New acridine-9-carboxamide linked to 1, 2, 3-triazole-N-phenylacetamide derivatives as potent α-glucosidase inhibitors: design, synthesis, in vitro, and in silico biological evaluations. Med Chem Res 29(10):1836–1845

    Article  CAS  Google Scholar 

  57. Asemanipoor N, Mohammadi-Khanaposhtani M, Moradi S, Vahidi M, Asadi M, Faramarzi MA, Mahdavi M, Biglar M, Larijani B, Hamedifar H, Hajimiri MH (2020) Synthesis and biological evaluation of new benzimidazole-1, 2, 3-triazole hybrids as potential α-glucosidase inhibitors. Bioorg Chem 95:103482

    Article  CAS  PubMed  Google Scholar 

  58. Asgari MS, Tahmasebi B, Mojtabavi S, Faramarzi MA, Rahimi R, Ranjbar PR, Biglar M, Larijani B, Rastegar H, Mohammadi-Khanaposhtani M, Mahdavi M (2020) Design, synthesis, biological evaluation, and docking study of new acridine-9-carboxamide linked to 1, 2, 3-triazole derivatives as antidiabetic agents targeting α-glucosidase. J Heterocycl Chem 57(12):4348–4357

    Article  CAS  Google Scholar 

  59. Kumar L, Lal K, Yadav P, Kumar A, Paul AK (2020) Synthesis, characterization, α-glucosidase inhibition and molecular modeling studies of some pyrazoline-1H-1, 2, 3-triazole hybrids. J Mol Struct 1216:128253

    Article  CAS  Google Scholar 

  60. Ye GJ, Lan T, Huang ZX, Cheng XN, Cai CY, Ding SM, Xie ML, Wang B (2019) Design and synthesis of novel xanthone-triazole derivatives as potential antidiabetic agents: α-glucosidase inhibition and glucose uptake promotion. Eur J Med Chem 177:362–373

    Article  CAS  PubMed  Google Scholar 

  61. Elattar E, Galala AA, Saad HA, Badria FA (2019) Alpha-amylase inhibitory effect and docking studies of some new curcumin-triazole derivatives. Acta Sci Nutr Health. https://doi.org/10.31080/ASNH.2019.03.0503

    Article  Google Scholar 

  62. Wang G, Peng Z, Wang J, Li J, Li X (2016) Synthesis and biological evaluation of novel 2, 4, 5-triarylimidazole–1, 2, 3-triazole derivatives via click chemistry as α-glucosidase inhibitors. Bioorg Med Chem Lett 26(23):5719–5723

    Article  CAS  PubMed  Google Scholar 

  63. da Rocha DR, Santos WC, Lima ES, Ferreira VF (2012) Synthesis of 1, 2, 3-triazole glycoconjugates as inhibitors of α-glucosidases. Carbohyd Res 350:14–19

    Article  Google Scholar 

  64. Le TD, Nguyen TC, Bui TMN, Hoang TKD, Vu QT, Pham CT et al (2023) Synthesis, structure and α-glucosidase inhibitor activity evaluation of some acetamide derivatives starting from 2-(naphthalen-1-yl) acetic acid, containing a 1, 2, 4-triazole. J Mol Struct 1284:135321

    Article  CAS  Google Scholar 

  65. Abdullah Asif HM, Kamal S, Rehman A-u, Rasool S, Hamid Akash MS (2022) Synthesis, characterization, and enzyme inhibition properties of 1, 2, 4-triazole bearing azinane analogues. ACS Omega 7(36):32360–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Asif HM, Kamal S, Bibi I, AlMasoud N, Alomar TS, Iqbal M (2023) Synthesis characterization and evaluation of novel triazole based analogs as a acetylcholinesterase and α-glucosidase inhibitors. Arab J Chem 16(4):104626

    Article  Google Scholar 

  67. Hajlaoui A, Laajimi M, Znati M, Jannet HB, Romdhane A (2021) Novel pyrano-triazolo-pyrimidine derivatives as anti-α-amylase agents: Synthesis, molecular docking investigations and computational analysis. J Mol Struct 1237:130346

    Article  CAS  Google Scholar 

  68. Mohamed MA, Abd Allah OA, Bekhit AA, Kadry AM, El-Saghier AMM (2020) Synthesis and antidiabetic activity of novel triazole derivatives containing amino acids. J Heterocycl Chem 57(6):2365–2378

    Article  CAS  Google Scholar 

  69. Gani RS, Timanagouda K, Madhushree S, Joshi SD, Hiremath MB, Mujawar SBH, Kudva AK (2020) Synthesis of novel indole, 1, 2, 4-triazole derivatives as potential glucosidase inhibitors. J King Saud Univ Sci 32(8):3388–3399

    Article  Google Scholar 

  70. Basappa VC, Kameshwar VH, Kumara K, Achutha DK, Krishnappagowda LN, Kariyappa AK (2020) Design and synthesis of coumarin-triazole hybrids: biocompatible anti-diabetic agents, in silico molecular docking and ADME screening. Heliyon 6(10):e05290

    Article  Google Scholar 

  71. Nafeesa K, Rehman AU, Abbasi MA, Siddiqui SZ, Rasool S, Ali Shah SA, Ashraf M, Jahan B, Lodhi MA, Khan FA (2019) α-Glucosidase inhibitory potential and hemolytic evaluation of newly synthesized 3,4,5-trisubstituted-1,2,4-triazole derivatives. Pak J Pharm Sci 32(6):2651–2658

    CAS  PubMed  Google Scholar 

  72. Channar PA, Saeed A, Larik FA, Rashid S, Iqbal Q, Rozi M, Younis S, Mahar J (2017) Design and synthesis of 2,6-di(substituted phenyl)thiazolo[3,2-b]-1,2,4-triazoles as α-glucosidase and α-amylase inhibitors, co-relative Pharmacokinetics and 3D QSAR and risk analysis. Biomed Pharmacother 94:499–513

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Chairman and Director of ISF College of Pharmacy, Moga, Punjab for supporting this work.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

RB wrote the main manuscript text and VA prepared figures and edited the manuscript. SKV and PP help in arranging data for the manuscript.

Corresponding author

Correspondence to Vivek Asati.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest, financial or otherwise.

Consent for publication

All authors give their consent for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Dubey, R., Bhupal, R. et al. An insight on medicinal attributes of 1,2,3‐ and 1,2,4‐triazole derivatives as alpha-amylase and alpha-glucosidase inhibitors. Mol Divers (2023). https://doi.org/10.1007/s11030-023-10728-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11030-023-10728-1

Keywords

Navigation