Skip to main content
Log in

Targeting lipid-sensing nuclear receptors PPAR (α, γ, β/δ): HTVS and molecular docking/dynamics analysis of pharmacological ligands as potential pan-PPAR agonists

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

The global prevalence of obesity-related systemic disorders, including non-alcoholic fatty liver disease (NAFLD), and cancers are rapidly rising. Several of these disorders involve peroxisome proliferator-activated receptors (PPARs) as one of the key cell signaling pathways. PPARs are nuclear receptors that play a central role in lipid metabolism and glucose homeostasis. They can activate or suppress the genes responsible for inflammation, adipogenesis, and energy balance, making them promising therapeutic targets for treating metabolic disorders. In this study, an attempt has been made to screen novel PPAR pan-agonists from the ZINC database targeting the three PPAR family of receptors (α, γ, β/δ), using molecular docking and molecular dynamics (MD) simulations. The top scoring five ligands with strong binding affinity against all the three PPAR isoforms were eprosartan, canagliflozin, pralatrexate, sacubitril, olaparib. The ADMET analysis was performed to assess the pharmacokinetic profile of the top 5 molecules. On the basis of ADMET analysis, the top ligand was subjected to MD simulations, and compared with lanifibranor (reference PPAR pan-agonist). Comparatively, the top-scoring ligand showed better protein–ligand complex (PLC) stability with all the PPARs (α, γ, β/δ). When experimentally tested in in vitro cell culture model of NAFLD, eprosartan showed dose dependent decrease in lipid accumulation and oxidative damage. These outcomes suggest potential PPAR pan-agonist molecules for further experimental validation and pharmacological development, towards treatment of PPAR-mediated metabolic disorders.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

PPAR:

Peroxisome proliferator-activated receptors

RXR:

Retinoid X receptor

NAFLD:

Non-alcoholic fatty liver disease

NASH:

Non-alcoholic steatohepatitis

HTVS:

High throughput virtual screening

MD:

Molecular dynamics

PDB:

Protein data bank

OPLS-2005:

Optimized potentials for liquid simulations

SP:

Standard precision

XP:

Extra precision

References

  1. Evans RM, Barish GD, Wang YX (2004) PPARs and the complex journey to obesity. Nat Med 10:355–361. https://doi.org/10.1038/nm1025

    Article  CAS  PubMed  Google Scholar 

  2. Fougerat A, Montagner A, Loiseau N et al (2020) Peroxisome proliferator-activated receptors and their novel ligands as candidates for the treatment of non-alcoholic fatty liver disease. Cells 9:1638. https://doi.org/10.3390/cells9071638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang F, Mullican SE, DiSpirito JR et al (2013) Lipoatrophy and severe metabolic disturbance in mice with fat-specific deletion of PPARγ. Proc Natl Acad Sci USA 110:18656–18661. https://doi.org/10.1073/pnas.1314863110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang Y-X (2010) PPARs: diverse regulators in energy metabolism and metabolic diseases. Cell Res 20:124–137. https://doi.org/10.1038/cr.2010.13

    Article  CAS  PubMed  Google Scholar 

  5. Jay M, Ren J (2007) Peroxisome proliferator-activated receptor (PPAR) in metabolic syndrome and Type 2 diabetes mellitus. Curr Diabetes Rev 3:33–39. https://doi.org/10.2174/157339907779802067

    Article  CAS  PubMed  Google Scholar 

  6. Berger JP, Akiyama TE, Meinke PT (2005) PPARs: therapeutic targets for metabolic disease. Trends Pharmacol Sci 26:244–251. https://doi.org/10.1016/j.tips.2005.03.003

    Article  CAS  PubMed  Google Scholar 

  7. Zimmet P, Alberti G, Kaufman F et al (2007) The metabolic syndrome in children and adolescents. Lancet 369:2059–2061. https://doi.org/10.1016/S0140-6736(07)60958-1

    Article  PubMed  Google Scholar 

  8. Engin A (2017) The definition and prevalence of obesity and metabolic syndrome. Adv Exp Med Biol 960:1–17. https://doi.org/10.1007/978-3-319-48382-5_1

    Article  CAS  PubMed  Google Scholar 

  9. Braissant O, Foufelle F, Scotto C et al (1996) Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-α, -β, and -γ in the adult rat. Endocrinology 137:354–366. https://doi.org/10.1210/endo.137.1.8536636

    Article  CAS  PubMed  Google Scholar 

  10. Lehrke M, Lazar MA (2005) The many faces of PPARγ. Cell 123:993–999. https://doi.org/10.1016/j.cell.2005.11.026

    Article  CAS  PubMed  Google Scholar 

  11. Zarei M, Barroso E, Leiva R et al (2016) Heme-regulated eIF2α kinase modulates hepatic FGF21 and is activated by PPARβ/δ deficiency. Diabetes 65:3185–3199. https://doi.org/10.2337/db16-0155

    Article  CAS  PubMed  Google Scholar 

  12. Zarei M, Barroso E, Palomer X et al (2018) Hepatic regulation of VLDL receptor by PPARβ/δ and FGF21 modulates non-alcoholic fatty liver disease. Mol Metab 8:117–131. https://doi.org/10.1016/j.molmet.2017.12.008

    Article  CAS  PubMed  Google Scholar 

  13. Belfiore A, Genua M, Malaguarnera R (2009) PPAR- γ agonists and their effects on igf-i receptor signaling: Implications for cancer. PPAR Res. https://doi.org/10.1155/2009/830501

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wagner N, Wagner K-D (2020) PPAR Beta/Delta and the hallmarks of cancer. Cells 9:1133. https://doi.org/10.3390/cells9051133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Park BH, Vogelstein B, Kinzler KW (2001) Genetic disruption of PPARδ decreases the tumorigenicity of human colon cancer cells. Proc Natl Acad Sci USA 98:2598–2603. https://doi.org/10.1073/pnas.051630998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bajaj M, Suraamornkul S, Hardies LJ et al (2007) Effects of peroxisome proliferator-activated receptor (PPAR)-α and PPAR-γ agonists on glucose and lipid metabolism in patients with type 2 diabetes mellitus. Diabetologia 50:1723–1731. https://doi.org/10.1007/s00125-007-0698-9

    Article  CAS  PubMed  Google Scholar 

  17. Gawrieh S, Noureddin M, Loo N, et al (2021) Saroglitazar, a PPAR-α/γ Agonist, for Treatment of NAFLD: A Randomized Controlled Double-Blind Phase 2 Trial

  18. Elshazly S, Soliman E (2019) PPAR gamma agonist, pioglitazone, rescues liver damage induced by renal ischemia/reperfusion injury. Toxicol Appl Pharmacol 362:86–94. https://doi.org/10.1016/j.taap.2018.10.022

    Article  CAS  PubMed  Google Scholar 

  19. Soliman E, Behairy SF, El-maraghy NN, Elshazly SM (2019) PPAR-γ agonist, pioglitazone, reduced oxidative and endoplasmic reticulum stress associated with L-NAME-induced hypertension in rats. Life Sci 239:117047. https://doi.org/10.1016/j.lfs.2019.117047

    Article  CAS  PubMed  Google Scholar 

  20. Abdellatif KRA, Fadaly WAA, Kamel GM et al (2019) Design, synthesis, modeling studies and biological evaluation of thiazolidine derivatives containing pyrazole core as potential anti-diabetic PPAR-γ agonists and anti-inflammatory COX-2 selective inhibitors. Bioorg Chem 82:86–99. https://doi.org/10.1016/j.bioorg.2018.09.034

    Article  CAS  PubMed  Google Scholar 

  21. Gastaldelli A, Sabatini S, Carli F et al (2021) PPAR-γ-induced changes in visceral fat and adiponectin levels are associated with improvement of steatohepatitis in patients with NASH. Liver Int 41:2659–2670. https://doi.org/10.1111/liv.15005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hasni S, Temesgen-Oyelakin Y, Davis M et al (2022) Peroxisome proliferator activated receptor-γagonist pioglitazone improves vascular and metabolic dysfunction in systemic lupus erythematosus. Ann Rheum Dis. https://doi.org/10.1136/ard-2022-222658

    Article  PubMed  Google Scholar 

  23. Yousefnia S, Momenzadeh S, Seyed Forootan F et al (2018) The influence of peroxisome proliferator-activated receptor γ (PPARγ) ligands on cancer cell tumorigenicity. Gene 649:14–22. https://doi.org/10.1016/j.gene.2018.01.018

    Article  CAS  PubMed  Google Scholar 

  24. Zarei M, Aguilar-Recarte D, Palomer X, Vázquez-Carrera M (2021) Revealing the role of peroxisome proliferator-activated receptor β/δ in nonalcoholic fatty liver disease. Metabolism 114:154342. https://doi.org/10.1016/j.metabol.2020.154342

    Article  CAS  PubMed  Google Scholar 

  25. Choi KC, Lee SY, Yoo HJ et al (2007) Effect of PPAR-δ agonist on the expression of visfatin, adiponectin, and resistin in rat adipose tissue and 3T3-L1 adipocytes. Biochem Biophys Res Commun 357:62–67. https://doi.org/10.1016/j.bbrc.2007.03.114

    Article  CAS  PubMed  Google Scholar 

  26. Rachid TL, Penna-de-Carvalho A, Bringhenti I et al (2015) Fenofibrate (PPARalpha agonist) induces beige cell formation in subcutaneous white adipose tissue from diet-induced male obese mice. Mol Cell Endocrinol 402:86–94. https://doi.org/10.1016/j.mce.2014.12.027

    Article  CAS  PubMed  Google Scholar 

  27. Veiga FMS, Graus-Nunes F, Rachid TL et al (2017) Anti-obesogenic effects of WY14643 (PPAR-alpha agonist): hepatic mitochondrial enhancement and suppressed lipogenic pathway in diet-induced obese mice. Biochimie 140:106–116. https://doi.org/10.1016/j.biochi.2017.07.003

    Article  CAS  PubMed  Google Scholar 

  28. Westerouen Van Meeteren MJ, Drenth JPH, Tjwa ETTL (2020) Elafibranor: a potential drug for the treatment of nonalcoholic steatohepatitis (NASH). Expert Opin Investig Drugs 29:117–123. https://doi.org/10.1080/13543784.2020.1668375

    Article  CAS  PubMed  Google Scholar 

  29. Jain MR, Giri SR, Bhoi B et al (2018) Dual PPARα/γ agonist saroglitazar improves liver histopathology and biochemistry in experimental NASH models. Liver Int 38:1084–1094. https://doi.org/10.1111/liv.13634

    Article  CAS  PubMed  Google Scholar 

  30. Wright MB, Bortolini M, Tadayyon M, Bopst M (2014) Minireview: challenges and opportunities in development of PPAR agonists. Mol Endocrinol 28:1756–1768. https://doi.org/10.1210/me.2013-1427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. A Phase 3 Study Evaluating Efficacy and Safety of Lanifibranor Followed by an Active Treatment Extension in Adult Patients With (NASH) and Fibrosis Stages F2 and F3 ( NATiV3 ) - Full Text View - ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT04849728. Accessed 14 May 2023

  32. Boyer-Diaz Z, Aristu-Zabalza P, Andrés-Rozas M et al (2021) Pan-PPAR agonist lanifibranor improves portal hypertension and hepatic fibrosis in experimental advanced chronic liver disease. J Hepatol 74:1188–1199. https://doi.org/10.1016/j.jhep.2020.11.045

    Article  CAS  PubMed  Google Scholar 

  33. Li X, Yu J, Wu M et al (2021) Pharmacokinetics and safety of Chiglitazar, a peroxisome proliferator-activated receptor pan-agonist, in patients < 65 and ≥ 65 years with Type 2 diabetes. Clin Pharmacol Drug Dev 10:789–796. https://doi.org/10.1002/cpdd.893

    Article  CAS  PubMed  Google Scholar 

  34. Berman HM, Westbrook J, Feng Z et al (2000) The protein data bank. Nucleic Acids Res 28:235–242. https://doi.org/10.1093/nar/28.1.235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mandal SK, Kumar BK, Sharma PK et al (2022) In silico and in vitro analysis of PPAR – α / γ dual agonists: comparative evaluation of potential phytochemicals with anti-obesity drug orlistat. Comput Biol Med 147:105796. https://doi.org/10.1016/j.compbiomed.2022.105796

    Article  CAS  PubMed  Google Scholar 

  36. Schrödinger Release 2019-1: Schrödinger Suite 2019-1 Protein Preparation Wizard; Epik, Schrödinger, LLC, New York, NY (2019)

  37. Shaw DE, Grossman JP, Bank JA, et al (2014) Anton 2: Raising the bar for performance and programmability in a special-purpose molecular dynamics supercomputer. In: International conference for high performance computing, networking, storage and analysis, SC. IEEE, pp 41–53

  38. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236. https://doi.org/10.1021/ja9621760

    Article  CAS  Google Scholar 

  39. Pires DEV, Blundell TL, Ascher DB (2015) pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem 58:4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bowers KJ, Chow E, Xu H et al (2006) Scalable algorithms for molecular dynamics simulations on commodity clusters. In: Proceedings of the 2006 ACM/IEEE conference on supercomputing, SC’06, pp 84-es

  41. Jacobson MP, Friesner RA, Xiang Z, Honig B (2002) On the role of the crystal environment in determining protein side-chain conformations. J Mol Biol 320:597–608. https://doi.org/10.1016/S0022-2836(02)00470-9

    Article  CAS  PubMed  Google Scholar 

  42. Kumar V, Dhanjal JK, Kaul SC et al (2020) Withanone and caffeic acid phenethyl ester are predicted to interact with main protease (Mpro) of SARS-CoV-2 and inhibit its activity. J Biomol Struct Dyn 39:1–13. https://doi.org/10.1080/07391102.2020.1772108

    Article  CAS  Google Scholar 

  43. Gu Y, Qi C, Sun X et al (2012) Arctigenin preferentially induces tumor cell death under glucose deprivation by inhibiting cellular energy metabolism. Biochem Pharmacol 84:468–476. https://doi.org/10.1016/j.bcp.2012.06.002

    Article  CAS  PubMed  Google Scholar 

  44. Ikeguchi M (2004) Partial rigid-body dynamics in NPT, NPAT and NPγT ensembles for proteins and membranes. J Comput Chem 25:529–541. https://doi.org/10.1002/jcc.10402

    Article  CAS  PubMed  Google Scholar 

  45. Stuart SJ, Zhou R, Berne BJ (1996) Molecular dynamics with multiple time scales: the selection of efficient reference system propagators. J Chem Phys 105:1426–1436. https://doi.org/10.1063/1.472005

    Article  CAS  Google Scholar 

  46. De Leon JAD, Borges CR (2020) Evaluation of oxidative stress in biological samples using the thiobarbituric acid reactive substances assay. J Vis Exp. https://doi.org/10.3791/61122

    Article  PubMed  Google Scholar 

  47. Han Y, Zhang J, Hu CQ et al (2019) In silico ADME and toxicity prediction of ceftazidime and its impurities. Front Pharmacol 10:434. https://doi.org/10.3389/fphar.2019.00434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wei J, Ghosh AK, Sargent JL et al (2010) PPAR? Downregulation by TGF in fibroblast and impaired expression and function in systemic sclerosis: a novel mechanism for progressive fibrogenesis. PLoS ONE 5:e13778. https://doi.org/10.1371/journal.pone.0013778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Peters JM, Shah YM, Gonzalez FJ (2012) The role of peroxisome proliferator-activated receptors in carcinogenesis and chemoprevention. Nat Rev Cancer 12:181–195. https://doi.org/10.1038/nrc3214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rahman ST, Lauten WB, Khan QA et al (2002) Effects of eprosartan versus hydrochlorothiazide on markers of vascular oxidation and inflammation and blood pressure (renin-angiotensin system antagonists, oxidation, and inflammation). Am J Cardiol 89:686–690. https://doi.org/10.1016/S0002-9149(01)02340-2

    Article  CAS  PubMed  Google Scholar 

  51. Schupp M, Janke J, Clasen R et al (2004) Angiotensin Type 1 receptor blockers induce peroxisome proliferator-activated receptor-γ activity. Circulation 109:2054–2057. https://doi.org/10.1161/01.CIR.0000127955.36250.65

    Article  CAS  PubMed  Google Scholar 

  52. Khare SG, Jena SK, Sangamwar AT et al (2017) Multicomponent pharmaceutical adducts of α-eprosartan: physicochemical properties and pharmacokinetic study. Cryst Growth Des 17:1589–1599. https://doi.org/10.1021/acs.cgd.6b01588

    Article  CAS  Google Scholar 

Download references

Acknowledgements

SKM, SP and MMR acknowledged the Institute Fellowship from BITS Pilani, and BKK is grateful to the Ministry of Tribal Affairs, Government of India, for the research fellowship. SM acknowledges the research support from Department of Biotechnology (Indo-Spain Bilateral Program), Govt. of India, New Delhi. The authors thank Birla Institute of Technology and Science (BITS), Pilani – Pilani Campus for providing research support and computational infrastructure.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

PRD, SM: Conceptualization; SKM, SP, BKK, MMR: Methodology & Experimentation; SKM, SP, BKK, MMR: Data curation Software; SKM, SP, BKK, & MMR: Writing and original draft preparation; SKM, SP, BKK, MMR, SM: Software and data validation; PRD, SM, PKS: Visualization, Investigation Supervision; SKM, SP, BKK, MMR, PRD, SM, PKS: Writing- Reviewing and Editing.

Corresponding author

Correspondence to P. R. Deepa.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, S.K., Puri, S., Kumar, B.K. et al. Targeting lipid-sensing nuclear receptors PPAR (α, γ, β/δ): HTVS and molecular docking/dynamics analysis of pharmacological ligands as potential pan-PPAR agonists. Mol Divers (2023). https://doi.org/10.1007/s11030-023-10666-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11030-023-10666-y

Keywords

Navigation