Skip to main content

Advertisement

Log in

Identification of 5-nitroindazole as a multitargeted inhibitor for CDK and transferase kinase in lung cancer: a multisampling algorithm-based structural study

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Lung cancer is the second most common cancer, which is the leading cause of cancer death worldwide. The FDA has approved almost 100 drugs against lung cancer, but it is still not curable as most drugs target a single protein and block a single pathway. In this study, we screened the Drug Bank library against three major proteins- ribosomal protein S6 kinase alpha-6 (6G77), cyclic-dependent protein kinase 2 (1AQ1), and insulin-like growth factor 1 (1K3A) of lung cancer and identified the compound 5-nitroindazole (DB04534) as a multitargeted inhibitor that potentially can treat lung cancer. For the screening, we deployed multisampling algorithms such as HTVS, SP and XP, followed by the MM\GBSA calculation, and the study was extended to molecular fingerprinting analysis, pharmacokinetics prediction, and Molecular Dynamics simulation to understand the complex’s stability. The docking scores against the proteins 6G77, 1AQ1, and 1K3A were − 6.884 kcal/mol, − 7.515 kcal/mol, and − 6.754 kcal/mol, respectively. Also, the compound has shown all the values satisfying the ADMET criteria, and the fingerprint analysis has shown wide similarities and the water WaterMap analysis that helped justify the compound’s suitability. The molecular dynamics of each complex have shown a cumulative deviation of less than 2 Å, which is considered best for the biomolecules, especially for the protein–ligand complexes. The best feature of the identified drug candidate is that it targets multiple proteins that control cell division and growth hormone mediates simultaneously, reducing the burden of the pharmaceutical industry by reducing the resistance chance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Organization WH. WHO report on cancer: setting priorities, investing wisely and providing care for all. 2020. https://www.who.int/publications/i/item/9789240001299.

  2. Organization WH. Gender in lung cancer and smoking research. 2004. https://apps.who.int/iris/handle/10665/43086.

  3. Ferlay J, Colombet M, Soerjomataram I, Parkin DM, Piñeros M, Znaor A et al (2021) Cancer statistics for the year 2020: an overview. Int J Cancer 149(4):778–789. https://doi.org/10.1002/ijc.33588

    Article  CAS  Google Scholar 

  4. Sharma R (2022) Mapping of global, regional and national incidence, mortality and mortality-to-incidence ratio of lung cancer in 2020 and 2050. Int J Clin Oncol 27(4):665–675. https://doi.org/10.1007/s10147-021-02108-2

    Article  PubMed  PubMed Central  Google Scholar 

  5. Minna JD, Roth JA, Gazdar AF (2002) Focus on lung cancer. Cancer Cell 1(1):49–52. https://doi.org/10.1016/S1535-6108(02)00027-2

    Article  CAS  PubMed  Google Scholar 

  6. Suzuki K, Watanabe S-i, Wakabayashi M, Saji H, Aokage K, Moriya Y et al (2022) A single-arm study of sublobar resection for ground-glass opacity dominant peripheral lung cancer. J Thorac Cardiovasc Surg 163(1):289-301.e2. https://doi.org/10.1016/S1535-6108(02)00027-2

    Article  PubMed  Google Scholar 

  7. Shaik NA, Al-Kreathy HM, Ajabnoor GM, Verma PK, Banaganapalli B (2019) Molecular designing, virtual screening and docking study of novel curcumin analogue as mutation (S769L and K846R) selective inhibitor for EGFR. Saudi J Biol Sci 26(3):439–448. https://doi.org/10.1016/j.sjbs.2018.05.026

    Article  CAS  PubMed  Google Scholar 

  8. Viktorsson K, Lewensohn R, Zhivotovsky B (2014) Systems biology approaches to develop innovative strategies for lung cancer therapy. Cell Death Dis 5(5):e1260-e. https://doi.org/10.1038/cddis.2014.28

    Article  CAS  Google Scholar 

  9. Gazdar A (2009) Activating and resistance mutations of EGFR in non-small-cell lung cancer: role in clinical response to EGFR tyrosine kinase inhibitors. Oncogene 28(1):S24–S31. https://doi.org/10.1038/onc.2009.198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yarden Y (2001) The EGFR family and its ligands in human cancer: signalling mechanisms and therapeutic opportunities. Eur J Cancer 37:3–8. https://doi.org/10.1016/S0959-8049(01)00230-1

    Article  Google Scholar 

  11. Schraufnagel DE, Balmes JR, Cowl CT, De Matteis S, Jung S-H, Mortimer K et al (2019) Air pollution and noncommunicable diseases: a review by the forum of international respiratory societies’ environmental committee, part 2: Air pollution and organ systems. Chest 155(2):417–426. https://doi.org/10.1016/j.chest.2018.10.041

    Article  PubMed  Google Scholar 

  12. Wang J, Jiang Y, Liang H, Li P, Xiao H, Ji J et al (2012) Attributable causes of cancer in China. Ann Oncol 23(11):2983–2989. https://doi.org/10.1093/annonc/mds139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu T-C, Jin X, Wang Y, Wang K (2017) Role of epidermal growth factor receptor in lung cancer and targeted therapies. Am J Cancer Res 7(2):187

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Prabhu VV, Prabhu V (2017) Epidermal growth factor receptor tyrosine kinase: a potential target in treatment of non-small-cell lung carcinoma. J Environ Pathol, Toxicol Oncol. https://doi.org/10.1615/jenvironpatholtoxicoloncol.2017018341

    Article  PubMed  Google Scholar 

  15. Tan L, Zhang J, Wang Y, Wang X, Wang Y, Zhang Z et al (2022) Development of dual inhibitors targeting epidermal growth factor receptor in cancer therapy. J Med Chem 65(7):5149–5183. https://doi.org/10.1021/acs.jmedchem.1c01714

    Article  CAS  PubMed  Google Scholar 

  16. Jiang W, Cai G, Hu PC, Wang Y (2018) Personalized medicine in non-small cell lung cancer: a review from a pharmacogenomics perspective. Acta Pharm Sin B 8(4):530–538. https://doi.org/10.1016/j.apsb.2018.04.005

    Article  PubMed  PubMed Central  Google Scholar 

  17. Levitzki A, Klein S (2010) Signal transduction therapy of cancer. Mol Aspects Med 31(4):287–329. https://doi.org/10.1016/j.mam.2010.04.001

    Article  CAS  PubMed  Google Scholar 

  18. Facchinetti F, Rossi G, Bria E, Soria J-C, Besse B, Minari R et al (2017) Oncogene addiction in non-small cell lung cancer: focus on ROS1 inhibition. Cancer Treat Rev 55:83–95. https://doi.org/10.1016/j.ctrv.2017.02.010

    Article  CAS  PubMed  Google Scholar 

  19. Lu X, Yu L, Zhang Z, Ren X, Smaill JB, Ding K (2018) Targeting EGFRL858R/T790M and EGFRL858R/T790M/C797S resistance mutations in NSCLC: Current developments in medicinal chemistry. Med Res Rev 38(5):1550–1581. https://doi.org/10.1002/med.21488

    Article  CAS  PubMed  Google Scholar 

  20. Sullivan I, Planchard D (2017) Next-generation EGFR tyrosine kinase inhibitors for treating EGFR-mutant lung cancer beyond first line. Front Med 3:76. https://doi.org/10.3389/fmed.2016.00076

    Article  Google Scholar 

  21. Chrysostomou S, Roy R, Prischi F, Thamlikitkul L, Chapman KL, Mufti U et al (2021) Repurposed floxacins targeting RSK4 prevent chemoresistance and metastasis in lung and bladder cancer. Science Translational Medicine 13(602):eaba4627. https://doi.org/10.1126/scitranslmed.aba4627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lawrie AM, Noble M, Tunnah P, Brown NR, Johnson LN, Endicott JA (1997) Protein kinase inhibition by staurosporine revealed in details of the molecular interaction with CDK2. Nat Struct Biol 4(10):796–801. https://doi.org/10.1038/nsb1097-796

    Article  CAS  PubMed  Google Scholar 

  23. Favelyukis S, Till JH, Hubbard SR, Miller WT (2001) Structure and autoregulation of the insulin-like growth factor 1 receptor kinase. Nat Struct Biol 8(12):1058–1063. https://doi.org/10.1038/nsb721

    Article  CAS  PubMed  Google Scholar 

  24. Ahmad S, Bano N, Qazi S, Yadav MK, Ahmad N, Raza K (2022) Multitargeted molecular dynamic understanding of butoxypheser against SARS-CoV-2: an in silico study. Nat Prod Commun 17(7):1-934578X221115499. https://doi.org/10.1177/1934578X221115499

    Article  Google Scholar 

  25. Ahmad S, Bhanu P, Kumar J, Pathak RK, Mallick D, Uttarkar A et al (2022) Molecular dynamics simulation and docking analysis of NF-κB protein binding with sulindac acid. Bioinformation 18(3):170–179. https://doi.org/10.6026/97320630018170

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ahmad S, Pasha KM, Raza K, Rafeeq MM, Habib AH, Eswaran M et al (2022) Reporting dinaciclib and theodrenaline as a multitargeted inhibitor against SARS-CoV-2: an in-silico study. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2022.2060308

    Article  PubMed  PubMed Central  Google Scholar 

  27. Alghamdi YS, Mashraqi MM, Alzamami A, Alturki NA, Ahmad S, Alharthi AA et al (2022) Unveiling the multitargeted potential of N-(4-Aminobutanoyl)-S-(4-methoxybenzyl)-L-cysteinylglycine (NSL-CG) against SARS CoV-2: a virtual screening and molecular dynamics simulation study. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2022.2110158

    Article  PubMed  Google Scholar 

  28. Ramlal A, Ahmad S, Kumar L, Khan FN, Chongtham R (2021) From molecules to patients: the clinical applications of biological databases and electronic health records. Translational bioinformatics in healthcare and medicine. Academic Press, London, pp 107–25. https://doi.org/10.1016/B978-0-323-89824-9.00009-4

    Book  Google Scholar 

  29. Yadav MK, Ahmad S, Raza K, Kumar S, Eswaran M, Pasha KMM (2022) Predictive modeling and therapeutic repurposing of natural compounds against the receptor-binding domain of SARS-CoV-2. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2021.2021993

    Article  PubMed  Google Scholar 

  30. Schrödinger Release 2023–1: Maestro, Schrödinger, LLC, New York, NY, 2021. https://www.schrodinger.com/citations.

  31. Schrödinger Release 2023–1: Protein preparation wizard; Epik, Schrödinger, LLC, New York, NY, 2021; Impact, Schrödinger, LLC, New York, NY; Prime, Schrödinger, LLC, New York, NY, 2021. 32. Release S. 1: Epik.(2020). Schrödinger Release. 2020;1. https://www.schrodinger.com/citations.

  32. Schrödinger Release 2023–1: Prime, Schrödinger, LLC, New York, NY, 2021. https://www.schrodinger.com/citations.

  33. Lu C, Wu C, Ghoreishi D, Chen W, Wang L, Damm W et al (2021) OPLS4: Improving force field accuracy on challenging regimes of chemical space. J Chem Theor Comput 17(7):4291–4300. https://doi.org/10.1021/acs.jctc.1c00302

    Article  CAS  Google Scholar 

  34. Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR et al (2018) DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res 46(1):1074–82. https://doi.org/10.1093/nar/gkx1037

    Article  CAS  Google Scholar 

  35. Schrödinger Release 2023–1: LigPrep, Schrödinger, LLC, New York, NY, 2021. https://www.schrodinger.com/citations.

  36. Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT et al (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 47(7):1750–9. https://doi.org/10.1021/jm030644s

    Article  CAS  PubMed  Google Scholar 

  37. Schrödinger Release 2023–1: QikProp, Schrödinger, LLC, New York, NY, 2021. https://www.schrodinger.com/citations.

  38. Targowska-Duda KM, Maj M, Drączkowski P, Budzyńska B, Boguszewska-Czubara A, Wróbel TM et al (2022) WaterMap-guided structure-based virtual screening for acetylcholinesterase inhibitors. ChemMedChem 17(8):e202100721. https://doi.org/10.1002/cmdc.202100721

    Article  CAS  PubMed  Google Scholar 

  39. Schrödinger Release 2023–1: WaterMap, Schrödinger, LLC, New York, NY, 2021. https://www.schrodinger.com/citations.

  40. Cappel D, Sherman W, Beuming T (2017) Calculating water thermodynamics in the binding site of proteins–applications of WaterMap to drug discovery. Curr Top Med Chem 17(23):2586–2598. https://doi.org/10.2174/1568026617666170414141452

    Article  CAS  PubMed  Google Scholar 

  41. Schrödinger Release 2023–1: Desmond molecular dynamics system, D. E. Shaw Research, New York, NY, 2021. Maestro-Desmond Interoperability Tools, Schrödinger, New York, NY, 2021. https://www.schrodinger.com/citations.

  42. McDonald I (1972) NpT-ensemble Monte Carlo calculations for binary liquid mixtures. Mol Phys 23(1):41–58. https://doi.org/10.1080/00268977200100031

    Article  CAS  Google Scholar 

  43. Karwasra R, Ahmad S, Bano N, Qazi S, Raza K, Singh S et al (2022) Macrophage-targeted punicalagin nanoengineering to alleviate Methotrexate-Induced Neutropenia: a molecular docking, DFT, and MD simulation analysis. Molecules 27(18):6034. https://doi.org/10.3390/molecules27186034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ahmad S, Sayeed S, Bano N, Sheikh K, Raza K (2022) In-silico analysis reveals quinic acid as a multitargeted inhibitor against cervical cancer. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2022.2146202

    Article  PubMed  PubMed Central  Google Scholar 

  45. Famuyiwa SO, Ahmad S, Fakola EG, Olusola AJ, Adesida SA, Obagunle FO et al (2023) Comprehensive computational studies of naturally occurring kuguacins as antidiabetic agents by targeting visfatin. Chem Afr. https://doi.org/10.1007/s42250-023-00604-8

    Article  Google Scholar 

  46. Shah AA, Ahmad S, Yadav MK, Raza K, Kamal MA, Akhtar S (2023) Structure-based virtual screening, molecular docking, molecular dynamics simulation, and metabolic reactivity studies of quinazoline derivatives for their anti-EGFR activity against tumor angiogenesis. Curr Med Chem. https://doi.org/10.2174/0929867330666230309143711

    Article  PubMed  Google Scholar 

  47. Tripathi MK, Ahmad S, Tyagi R, Dahiya V, Yadav MK (2022) Fundamentals of molecular modeling in drug design. Computer aided drug design (CADD): From ligand-based methods to structure-based approaches. . Elsevier, Amsterdam, pp 125–55. https://doi.org/10.1016/B978-0-323-90608-1.00001-0

    Book  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Jamia Millia Islamia, New Delhi, for providing computational resources and software solutions.

Author information

Authors and Affiliations

Authors

Contributions

SA contributed to conceptualisation, data collection/curation, analysis, writing, and extensive editing of the first draft. KR contributed to supervision, computational resources, reviewing, and editing.

Corresponding author

Correspondence to Khalid Raza.

Ethics declarations

Conflict of interest

The authors declare no potential competing or conflict of interest.

Ethical approval

Since this study is entirely in silico, ethical obligations are not applicable because they do not directly involve humans or other organisms.

Consent for publication

Both authors agree to submit the manuscript to the journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, S., Raza, K. Identification of 5-nitroindazole as a multitargeted inhibitor for CDK and transferase kinase in lung cancer: a multisampling algorithm-based structural study. Mol Divers (2023). https://doi.org/10.1007/s11030-023-10648-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11030-023-10648-0

Keywords

Navigation