Skip to main content
Log in

Unraveling the access to the regioselective synthesis of highly functionalized pyranopyrazoles using an ionic liquid catalyst

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

An efficient and green strategy for the regioselective synthesis of highly functionalized pyranopyrazole via one-pot condensation of 3-methyl-1-phenyl-5-pyrazolone or EAA and hydrazine hydrate, substituted aromatic aldehydes with NMSM [(E)-N-Methyl-1-(methylthio)-2-nitro-ethenamine] in the existence of IL [(EMIM)Ac] as catalyst with solvent-free condition (SFC) is described. This domino protocol produces biologically substantial heterocycles through Knoevenagel condensation proceeded by Michael addition and O-cyclization with an eradication of methanethiol group, which create the one stereo-center and creation of “C–C, C–N, C–O, C=C, C=N, bonds.” The final product is produced by exceptionally easy filtering after the reaction mass was triturated with ethanol. The strategy's noteworthy features include the use of biodegradable IL catalyst, excellent to exceptional yield with rapid reaction times, applicability to a wide range of substrate, clear reaction profile, and straightforward workup process.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. aIsolated yield

References

  1. Zuin VG, Eilks I, Elschami M, Kümmerer K (2021) Education in green chemistry and in sustainable chemistry: perspectives towards sustainability. Green Chem 23(4):1594–1608. https://doi.org/10.1039/D0GC03313H

    Article  CAS  Google Scholar 

  2. Katariya AP, Bhagat DS, Katariya MV, Pawar RP (2017) Green techniques in organic synthesis and its advantages. J Med Chem Drug Discov 3:62–66

    Google Scholar 

  3. Jiang B, Rajale T, Wever W, Tu SJ, Li G (2010) Multicomponent reactions for the synthesis of heterocycles. Chem Asian J 5(11):2318–2335. https://doi.org/10.1002/asia.201000310

    Article  CAS  PubMed  Google Scholar 

  4. Naresh G, Lakkaniga NR, Kharbanda A, Yan W, Frett B (2019) Li HY (2019) Use of Imidazo [1, 2-a] pyridine as a carbonyl surrogate in a Mannich-Like, catalyst free, one-pot reaction. Eur J Org Chem 4:770–777. https://doi.org/10.1002/ejoc.201801430

    Article  CAS  Google Scholar 

  5. Naresh G, Kharbanda A, Lakkaniga NR, Zhang L, Cooper R, Li HY, Frett B (2018) Catalyst free, C-3 functionalization of imidazo [1, 2-a] pyridines to rapidly access new chemical space for drug discovery efforts. Chem Commun 54(92):12954–12957. https://doi.org/10.1021/ol502072k

    Article  CAS  Google Scholar 

  6. Naresh G, Kant R, Narender T (2014) Copper (II) catalyzed expeditious synthesis of furoquinoxalines through a one-pot three-component coupling strategy. Org Lett 16(17):4528–4531. https://doi.org/10.1021/ol502072k

    Article  CAS  PubMed  Google Scholar 

  7. Rotstein BH, Zaretsky S, Rai V, Yudin AK (2014) Small heterocycles in multicomponent reactions. Chem Rev 114(16):8323–8359. https://doi.org/10.1021/cr400615v

    Article  CAS  PubMed  Google Scholar 

  8. Boukis AC, Reiter K, Frölich M, Hofheinz D, Meier MAR (2018) Multicomponent reactions provide key molecules for secret communication. Nat Commun 9(1):1439. https://doi.org/10.1038/s41467-018-03784-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Martins MAP, Frizzo CP, Moreira DN, Buriol L, Machado P (2009) Solvent-free heterocyclic synthesis. Chem Rev 109(9):4140–4182. https://doi.org/10.1021/cr9001098

    Article  CAS  PubMed  Google Scholar 

  10. Zangade S, Patil P (2019) A review on solvent-free methods in organic synthesis. Curr Org Chem 23(21):2295–2318. https://doi.org/10.2174/1385272823666191016165532

    Article  CAS  Google Scholar 

  11. Metzger JO (1998) Solvent-free organic syntheses. Angew Chem Int Ed 37(21):2975–2978. https://doi.org/10.1002/(SICI)1521-3773(19981116)37:21%3c2975::AID-ANIE2975%3e3.0.CO;2-A

    Article  CAS  Google Scholar 

  12. Olivier-Bourbigou H, Magna L, Morvan D (2010) Ionic liquids and catalysis: recent progress from knowledge to applications. Appl Catal Gen 373(1–2):1–56. https://doi.org/10.1016/j.apcata.2009.10.008

    Article  CAS  Google Scholar 

  13. Shi F, Gu Y, Zhang Q, Deng Y (2004) Development of ionic liquids as green reaction media and catalysts. Catal Surv from Asia 8(3):179–186

    Article  CAS  Google Scholar 

  14. Zhang Q, Zhang S, Deng Y (2011) Recent advances in ionic liquid catalysis. Green Chem 13(10):2619–2637. https://doi.org/10.1039/c1gc15334j

    Article  CAS  Google Scholar 

  15. Das D, Banerjee R, Mitra A (2014) Bioactive and pharmacologically important pyrano[2,3-c]pyrazoles. J Chem Pharm Res 6(11):108–116

    Google Scholar 

  16. Mohamed NR, Khaireldin NY, Fahmy AF, El-Sayed AA (2010) Facile synthesis of fused nitrogen containing heterocycles as anticancer agents. Pharma Chem 2(1):400–417

    CAS  Google Scholar 

  17. Foloppe N, Fisher LM, Howes R, Potter A, Robertson AGS, Surgenor AE (2006) Identification of chemically diverse Chk1 inhibitors by receptor-based virtual screening. Bioorg Med Chem 14:4792–4802

    Article  CAS  PubMed  Google Scholar 

  18. Ramtekkar R, Kumarvel K, Vasuki G, Sekar K, Krishna R (2009) Computer-aided drug design of pyranopyrazoles and related compounds for checkpoint kinase-. Lett Drug Des Discovery 6:579–584

    Article  CAS  Google Scholar 

  19. Saundane AR, Walmik P, Yarlakatti M, Katkar V, Verma VA (2014) Synthesis and biological activities of some new annulated pyrazolopyranopyrimidines and their derivatives containing indole nucleus: synthesis and biological activities of some new annulated pyrazolopyranopyrimidines and their derivatives containing indole nucleus. J Heterocycl Chem 51(2):303–314. https://doi.org/10.1002/jhet.1582

    Article  CAS  Google Scholar 

  20. Ismail MMF, Khalifa NM, Fahmy HH, Nossier ES, Abdulla MM (2014) Design, docking, and synthesis of some new pyrazoline and pyranopyrazole derivatives as anti-inflammatory agents. J Heterocycl Chem 51(2):450–458. https://doi.org/10.1002/jhet.1757

    Article  CAS  Google Scholar 

  21. Ueda T, Mase H, Oda N, Ito I (1891) Synthesis of pyrazolone derivatives XXXIX. Synthesis and analgesic activity of pyrano [2, 3-c] pyrazoles. Chem Pharm Bull (Tokyo) 29(12):3522–3528. https://doi.org/10.1248/cpb.29.3522

    Article  Google Scholar 

  22. Capodanno D, Ferreiro JL, Angiolillo DJ (2013) Antiplatelet therapy: new pharmacological agents and changing paradigms. J Thromb Haemost 11:316–329. https://doi.org/10.1111/jth.12219

    Article  PubMed  Google Scholar 

  23. Tacconi G, Gatti G, Desimoni G, Messori VA (1980) New route to 4H-pyrano[2,3-c]pyrazoles. J Für Prakt Chem 322(5):831–834. https://doi.org/10.1002/prac.19803220519

    Article  CAS  Google Scholar 

  24. Abdelrazek FM, Metz P, Metwally NH, El-Mahrouky SF (2006) Synthesis and molluscicidal activity of new cinnoline and pyrano [2,3-c]pyrazole derivatives. Arch Pharm (Weinheim) 339(8):456–460. https://doi.org/10.1002/ardp.200600057

    Article  CAS  PubMed  Google Scholar 

  25. Yadav DK, Quraishi MA (2012) Electrochemical investigation of substituted pyranopyrazoles adsorption on mild steel in acid solution. Ind Eng Chem Res 51(24):8194–8210. https://doi.org/10.1021/ie3002155

    Article  CAS  Google Scholar 

  26. Vasuki G, Kumaravel K (2008) Rapid four-component reactions in water: synthesis of pyranopyrazoles. Tetrahedron Lett 49(39):5636–5638. https://doi.org/10.1016/j.tetlet.2008.07.055

    Article  CAS  Google Scholar 

  27. Kanagaraj K, Pitchumani K (2010) Solvent-free multicomponent synthesis of pyranopyrazoles: Per-6-Amino-β-Cyclodextrin as a remarkable catalyst and host. Tetrahedron Lett 51(25):3312–3316. https://doi.org/10.1016/j.tetlet.2010.04.087

    Article  CAS  Google Scholar 

  28. Zolfigol MA, Tavasoli M, Moosavi-Zare AR, Moosavi P, Kruger HG, Shiri M, Khakyzadeh V (2013) Synthesis of pyranopyrazoles using isonicotinic acid as a dual and biological organocatalyst. RSC Adv 3(48):25681. https://doi.org/10.1039/c3ra45289a

    Article  CAS  Google Scholar 

  29. Reddy MBM, Jayashankara VP, Pasha MA (2010) Glycine-catalyzed efficient synthesis of pyranopyrazoles via one-pot multicomponent reaction. Synth Commun 40(19):2930–2934. https://doi.org/10.1080/00397910903340686

    Article  CAS  Google Scholar 

  30. Katariya AP, Deshmukh SU, Munde SB, Katariya MV, Pawar RP (2019) Green and expeditious one pot synthesis of pyrano[2,3-c]pyrazole using potassium ter-butoxide catalyst in aqueous medium. Int J Green Herb Chem. https://doi.org/10.24214/IJGHC/GC/8/3/79097

    Article  Google Scholar 

  31. Kanchithalaivan S, Sivakumar S, Ranjith Kumar R, Elumalai P, Ahmed QN, Padala AK (2013) Four-component domino strategy for the combinatorial synthesis of novel 1,4-Dihydropyrano[2,3- c ]Pyrazol-6-Amines. ACS Comb Sci 15(12):631–638. https://doi.org/10.1021/co4000997

    Article  CAS  PubMed  Google Scholar 

  32. Jayabal K, Paramasivan TP (2014) An expedient four-component domino protocol for the regioselective synthesis of highly functionalized pyranopyrazoles and chromenopyrazoles via nitroketene-N, S-acetal chemistry under solvent-free condition. Tetrahedron Lett 55(12):2010–2014. https://doi.org/10.1016/j.tetlet.2014.02.019

    Article  CAS  Google Scholar 

  33. Survase DN, Chavan HV, Dongare SB, Ganapure SD, Helavi VB (2017) Indium chloride (InCl3) catalysed domino protocol for the regioselective synthesis of highly functionalized pyranopyrazoles under mild conditions. Iran Chem Commun 5:105–114

    CAS  Google Scholar 

  34. Khan MdM, Shareef S, Saigal S, Sahoo SCA (2019) Catalyst and solvent-free protocol for the sustainable synthesis of fused 4H-pyran derivatives. RSC Adv 9(45):26393–26401. https://doi.org/10.1039/C9RA04370E

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Katariya AP, Yadav AR, Pawar OB, Pisal PM, Sangshetti JN, Katariya MV, Deshmukh SU (2022) An Efficient and green synthesis of tetrahydrobenzo[b]pyan derivatives using [(EMIM)Ac] at room temperature. ChemistrySelect. https://doi.org/10.1002/slct.202104184

    Article  Google Scholar 

  36. Katariya AP, Katariya MV, Sangshetti J, Deshmukh SU (2022) Ionic liquid [(EMIM)Ac] catalyzed green and efficient synthesis of Pyrano[2,3- c ]Pyrazole derivatives. Polycycl Aromat Compd. https://doi.org/10.1080/10406638.2022.2077775

    Article  Google Scholar 

  37. Katariya AP, Gaikwad PB, Kadam GG, Katariya MV, Deshmukh SU (2022) Ionic liquid promoted regio-selective synthesis of 2-Methyl Amino-3-Nitro-pyrano[3,2- c ]chromen-5-ones. ChemistrySelect. https://doi.org/10.1002/slct.202201295

    Article  Google Scholar 

  38. Katariya AP, Deshmukh SU, Tekale SU, Katariya MV, Pawar RP (2021) Amberlite IR-120 catalyzed green and efficient one-pot synthesis of benzylpyrazolyl coumarin in aqueous medium. Lett Appl NanoBioSci 10(3):2525–2534. https://doi.org/10.33263/LIANBS103.25252534

    Article  Google Scholar 

  39. Deshmukh SU, Sangshetti JN, Bhosale SV, Pawar RP (2021) Benzopyranyl phosphonate and β-phosphono malonates derivatives: an exciting breakthrough in chemistry. ChemistrySelect 6(4):617–629. https://doi.org/10.1002/slct.202004159

    Article  CAS  Google Scholar 

  40. Deshmukh SU, Kharat KR, Kadam GG, Pawar RP (2018) Synthesis of novel α-aminophosphonate derivatives, biological evaluation as potent antiproliferative agents and molecular docking. ChemistrySelect 3(20):5552–5558. https://doi.org/10.1002/slct.201800798

    Article  CAS  Google Scholar 

  41. Thorat VV, Dake SA, Deshmukh SU, RasokkiyamUddin EMF, Pawar RP (2013) Ionic liquid mediated synthesis of novel tetrahydroimidazo [1,2- a]pyrimidine-6-carboxylate derivatives. Lett Org Chem 10(3):178–184

    Article  CAS  Google Scholar 

  42. Ansari SA, Deshmukh SU, Patil RB, Damale MG, Patil RH, Alkahtani HM, Almehizia AA, Al-Tuwajiri HM, Aleanizy FS, Alqahtani FY, Pathan SK, Sangshetti JN (2019) Identification of promising biofilm inhibitory and cytotoxic quinazolin-4-one derivatives: synthesis, evaluation molecular docking and ADMET studies. ChemistrySelect 4(12):3559–3566. https://doi.org/10.1002/slct.201803795

    Article  CAS  Google Scholar 

Download references

Acknowledgements

SAIF-PU, Panjab University, Chandigarh, provided the spectrum data, such as 1H & 13C NMR, to the authors, and they would like to express their gratitude for their assistance in this study. This research work would not have been possible without the general facilities provided by Deogiri College, Aurangabad.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maya V. Katariya or Satish U. Deshmukh.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11030_2022_10572_MOESM1_ESM.docx

Supplementary file1 (DOCX 3321 KB) The IR, 1H, 13C NMR, and HRMS spectra of new and a few previously known pyranopyrazole compounds are included in a supporting information also consist of a table shows synthesized compound’s yield and melting point

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katariya, A.P., Shirsath, P.D., Narode, H. et al. Unraveling the access to the regioselective synthesis of highly functionalized pyranopyrazoles using an ionic liquid catalyst. Mol Divers 27, 2633–2649 (2023). https://doi.org/10.1007/s11030-022-10572-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-022-10572-9

Keywords

Navigation