Skip to main content

Advertisement

Log in

Mce1R of Mycobacterium tuberculosis prefers long-chain fatty acids as specific ligands: a computational study

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

The mce1 operon of Mycobacterium tuberculosis, which codes the Mce1 transporter, facilitates the transport of fatty acids. Fatty acids are one of the major sources for carbon and energy for the pathogen during its intracellular survival and pathogenicity. The mce1 operon is transcriptionally regulated by Mce1R, a VanR-type regulator, which could bind specific ligands and control the expression of the mce1 operon accordingly. This work reports computational identification of Mce1R-specific ligands. Initially by employing cavity similarity search algorithm by the ProBis server, the cavities of the proteins similar to that of Mce1R and the bound ligands were identified from which fatty acids were selected as the potential ligands. From the earlier-generated monomeric structure, the dimeric structure of Mce1R was then modeled by the GalaxyHomomer server and validated computationally to use in molecular docking and molecular dynamics simulation analysis. The fatty acid ligands were found to dock within the cavity of Mce1R and the docked complexes were subjected to molecular dynamics simulation to explore their stabilities and other dynamic properties. The data suggest that Mce1R preferably binds to long-chain fatty acids and undergoes distinct structural changes upon binding.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Global Tuberculosis Report 2022 (2022) World Health Organization, Geneva. License: CC BY-NC-SA 3.0 IGO

  2. Sturgill-Koszycki S, Schlesinger PH, Chakraborty P, Haddix PL, Collins HL, Fok AK, Allen RD, Gluck SL, Heuser J, Russell DG (1994) Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science 263:678–681. https://doi.org/10.1126/science.8303277

    Article  CAS  PubMed  Google Scholar 

  3. Simmons JD, Stein CM, Seshadri C, Campo M, Alter G, Fortune S, Schurr E, Wallis RS, Churchyard G, Mayanja-Kizza H, Boom WH, Hawn TR (2018) Immunological mechanisms of human resistance to persistent Mycobacterium tuberculosis infection. Nat Rev Immunol 18:575–589. https://doi.org/10.1038/s41577-018-0025-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Arruda S, Bonfim G, Knights R, Huima-Byron T, Riley LW (1993) Cloning of an M. tuberculosis DNA fragment associated with entry and survival inside cells. Science 261:1454–1457. https://doi.org/10.1126/science.8367727

    Article  CAS  PubMed  Google Scholar 

  5. Chitale S, Ehrt S, Kawamura I, Fujimura T, Shimono N, Anand N, Lu S, Cohen-Gould L, Riley LW (2001) Recombinant Mycobacterium tuberculosis protein associated with mammalian cell entry. Cell Microbiol 4:247–254. https://doi.org/10.1046/j.1462-5822.2001.00110.x

    Article  Google Scholar 

  6. Shazly SE, Ahmad S, Mustafa AS, Attiyah RA, Krajci D (2007) Internalization by HeLa cells of latex beads coated with mammalian cell entry (Mce) proteins encoded by the mce3 operon of Mycobacterium tuberculosis. J Med Microbiol 56:1145–1151. https://doi.org/10.1099/jmm.0.47095-0

    Article  CAS  PubMed  Google Scholar 

  7. Saini NK, Sharma M, Chandolia A, Pasricha R, Brahmachari V, Bose M (2008) Characterization of Mce4A protein of Mycobacterium tuberculosis: role in invasion and survival. BMC Microbiol 8:200. https://doi.org/10.1186/1471-2180-8-200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang Y, Li J, Li B, Wang J, Liu CH (2018) Mycobacterium tuberculosis Mce3C promotes mycobacteria entry into macrophages through activation of β2 integrin-mediated signaling pathway. Cell Microbiol 20:e12800. https://doi.org/10.1111/cmi.12800

    Article  CAS  Google Scholar 

  9. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE III, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544. https://doi.org/10.1038/31159

    Article  CAS  PubMed  Google Scholar 

  10. Shimono N, Morici L, Casali N, Cantrell S, Sidders B, Ehrt S, Riley LW (2003) Hypervirulent mutant of Mycobacterium tuberculosis resulting from disruption of the mce1 operon. Proc Natl Acad Sci USA 100:15918–15923. https://doi.org/10.1073/pnas.2433882100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pandey AK, Sassetti CM (2008) Mycobacterial persistence requires the utilization of host cholesterol. Proc Natl Acad Sci USA 105:4376–4380. https://doi.org/10.1073/pnas.0711159105

    Article  PubMed  PubMed Central  Google Scholar 

  12. Casali N, Riley LW (2007) A phylogenomic analysis of the Actinomycetales mce operons. BMC Genomics 8:60. https://doi.org/10.1186/1471-2164-8-60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kumar A, Chandolia A, Chaudhry U, Brahmachari V, Bose M (2005) Comparison of mammalian cell entry operons of mycobacteria: in silico analysis and expression profiling. FEMS Immunol Med Microbiol 43:185–195. https://doi.org/10.1016/j.femsim.2004.08.013

    Article  CAS  PubMed  Google Scholar 

  14. Fenn K, Wong CT, Darbari VC (2019) Mycobacterium tuberculosis uses Mce proteins to interfere with host cell signaling. Front Mol Biosci 6:149. https://doi.org/10.3389/fmolb.2019.00149

    Article  CAS  PubMed  Google Scholar 

  15. Cantrell SA, Leavell MD, Marjanovic O, Iavarone AT, Leary JA, Riley LW (2013) Free mycolic acid accumulation in the cell wall of the mce1 operon mutant strain of Mycobacterium tuberculosis. J Microbiol 51:619–626. https://doi.org/10.1007/s12275-013-3092-y

    Article  CAS  PubMed  Google Scholar 

  16. Marjanovic O, Iavarone AT, Riley LW (2011) Sulfolipid accumulation in Mycobacterium tuberculosis disrupted in the mce2 operon. J Microbiol 49:441–447. https://doi.org/10.1007/s12275-011-0435-4

    Article  CAS  PubMed  Google Scholar 

  17. de la Paz SM, Klepp L, Nuñez-García J, Blanco FC, Soria M, García-Pelayo MC, Bianco MV, Cataldi AA, Golby P, Jackson M, Gordon SV, Bigi F (2009) Mce3R, a TetR-type transcriptional repressor, controls the expression of a regulon involved in lipid metabolism in Mycobacterium tuberculosis. Microbiology 155:2245–2255. https://doi.org/10.1099/mic.0.027086-0

    Article  CAS  Google Scholar 

  18. Xu G, Li Y, Yang J, Zhou X, Yin X, Liu M, Zhao D (2007) Effect of recombinant Mce4A protein of Mycobacterium bovis on expression of TNF-alpha, iNOS, IL-6, and IL-12 in bovine alveolar macrophages. Mol Cell Biochem 302:1–7. https://doi.org/10.1007/s11010-006-9395-0

    Article  CAS  PubMed  Google Scholar 

  19. Stavrum R, Stavrum AK, Valvatne H, Riley LW, Ulvestad E, Jonassen I, Assmus J, Doherty TM, Grewal HM (2011) Modulation of transcriptional and inflammatory responses in murine macrophages by the Mycobacterium tuberculosis mammalian cell entry (Mce) 1 complex. PLoS ONE 6(10):e26295. https://doi.org/10.1371/journal.pone.0026295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li J, Chai QY, Zhang Y, Li BX, Wang J, Qiu XB, Liu CH (2015) Mycobacterium tuberculosis Mce3E suppresses host innate immune responses by targeting ERK1/2 signaling. J Immunol 194:3756–3767. https://doi.org/10.4049/jimmunol.1402679

    Article  CAS  PubMed  Google Scholar 

  21. Qiang L, Wang J, Zhang Y, Ge P, Chai Q, Li B, Shi Y, Zhang L, Gao GF, Liu CH (2019) Mycobacterium tuberculosis Mce2E suppresses the macrophage innate immune response and promotes epithelial cell proliferation. Cell Mol Immunol 16:380–391. https://doi.org/10.1038/s41423-018-0016-0

    Article  CAS  PubMed  Google Scholar 

  22. Uchida Y, Casali N, White A, Morici L, Kendall LV, Riley LW (2007) Accelerated immunopathological response of mice infected with Mycobacterium tuberculosis disrupted in the mce1 operon negative transcriptional regulator. Cell Microbiol 9:1275–1283. https://doi.org/10.1111/j.1462-5822.2006.00870.x

    Article  CAS  PubMed  Google Scholar 

  23. Senaratne RH, Sidders B, Sequeira P, Saunders G, Dunphy K, Marjanovic O, Reader JR, Lima P, Chan S, Kendall S, McFadden J, Riley LW (2008) Mycobacterium tuberculosis strains disrupted in mce3 and mce4 operons are attenuated in mice. J Med Microbiol 57:164–170. https://doi.org/10.1099/jmm.0.47454-0

    Article  CAS  PubMed  Google Scholar 

  24. Marjanovic O, Miyata T, Goodridge A, Kendall LV, Riley LW (2010) Mce2 operon mutant strain of Mycobacterium tuberculosis is attenuated in C57BL/6 mice. Tuberculosis 90:50–56. https://doi.org/10.1016/j.tube.2009.10.004

    Article  CAS  PubMed  Google Scholar 

  25. Bishai W (2000) Lipid lunch for persistent pathogen. Nature 406:683–685. https://doi.org/10.1038/35021159

    Article  CAS  PubMed  Google Scholar 

  26. McKinney JD, Höner zu Bentrup K, Muñoz-Elias EJ, Miczak A, Chen B, Chan WT, Swenson D, Sacchettini JC, Jacobs WR Jr, Russell DG (2000) Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406:735–738. https://doi.org/10.1038/35021074

    Article  CAS  PubMed  Google Scholar 

  27. Marrero J, Rhee KY, Schnappinger D, Pethe K, Ehrt S (2010) Gluconeogenic carbon flow of tricarboxylic acid cycle intermediates is critical for Mycobacterium tuberculosis to establish and maintain infection. Proc Natl Acad Sci USA 107:9819–9824. https://doi.org/10.1073/pnas.1000715107

    Article  PubMed  PubMed Central  Google Scholar 

  28. Nazarova EV, Montague CR, La T, Wilburn KM, Sukumar N, Lee W, Caldwell S, Russell DG, VanderVen BC (2017) Rv3723/LucA coordinates fatty acid and cholesterol uptake in Mycobacterium tuberculosis. eLife 6:e26969. https://doi.org/10.7554/eLife.26969

    Article  PubMed  PubMed Central  Google Scholar 

  29. Casali N, White AM, Riley LW (2006) Regulation of the Mycobacterium tuberculosis mce1 operon. J Bacteriol 188:441–449. https://doi.org/10.1128/JB.188.2.441-449.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. de la Paz SM, Blanco F, Campos E, Soria M, Bianco MV, Klepp L, Alito A, Zabal O, Cataldi C, Bigi F (2009) Mce2R from Mycobacterium tuberculosis represses the expression of the mce2 operon. Tuberculosis 89:22–28. https://doi.org/10.1016/j.tube.2008.09.002

    Article  CAS  Google Scholar 

  31. Santangelo MP, Goldstein J, Alito A, Gioffré A, Caimi K, Zabal O, Zumãrraga M, Romano MI, Cataldi AA, Bigi F (2002) Negative transcriptional regulation of the mce3 operon in Mycobacterium tuberculosis. Microbiology 148:2997–3006. https://doi.org/10.1099/00221287-148-10-2997

    Article  CAS  PubMed  Google Scholar 

  32. Kendall SL, Withers M, Soffair CN, Moreland NJ, Gurcha S, Sidders B, Frita R, Ten Bokum A, Besra GS, Lott JS, Stoker NG (2007) A highly conserved transcriptional repressor controls a large regulon involved in lipid degradation in Mycobacterium smegmatis and Mycobacterium tuberculosis. Mol Microbiol 65:684–699. https://doi.org/10.1111/j.1365-2958.2007.05827.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wipperman MF, Sampson NS, Thomas ST (2014) Pathogen roid rage: cholesterol utilization by Mycobacterium tuberculosis. Crit Rev Biochem Mol Biol 49:269–293. https://doi.org/10.3109/10409238.2014.895700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vindal V, Ranjan S, Ranjan A (2007) In silico analysis and characterization of GntR family of regulators from Mycobacterium tuberculosis. Tuberculosis 87:242–247. https://doi.org/10.1016/j.tube.2006.11.002

    Article  CAS  PubMed  Google Scholar 

  35. Cuthbertson L, Nodwell JR (2013) The TetR family of regulators. Microbiol Mol Biol Rev 77:440–475. https://doi.org/10.1128/MMBR.00018-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rigali S, Derouaux A, Giannotta F, Dusart J (2002) Subdivision of the helix–turn–helix GntR family of bacterial regulators in the FadR, HutC, MocR, and YtrA subfamilies. J Biol Chem 277:12507–12515. https://doi.org/10.1074/jbc.M110968200

    Article  CAS  PubMed  Google Scholar 

  37. Ho NAT, Dawes SS, Crowe AM, Casabon I, Gao C, Kendall SL, Baker EN, Eltis LD, Lott JS (2016) The structure of the transcriptional repressor KstR in complex with CoA thioester cholesterol metabolites sheds light on the regulation of cholesterol catabolism in Mycobacterium tuberculosis. J Biol Chem 291:7256–7266. https://doi.org/10.1074/jbc.M115.707760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yousuf S, Angara RK, Roy A, Gupta SK, Misra R, Ranjan A (2018) Mce2R/Rv0586 of Mycobacterium tuberculosis is the functional homologue of FadRE.Coli. Microbiology 164:1133–1145. https://doi.org/10.1099/mic.0.000686

    Article  CAS  PubMed  Google Scholar 

  39. Maity D, Katreddy RR, Bandhu A (2021) Molecular cloning, purification and characterization of Mce1R of Mycobacterium tuberculosis. Mol Biotechnol 63:200–220. https://doi.org/10.1007/s12033-020-00293-5

    Article  CAS  PubMed  Google Scholar 

  40. Konc J, Miller BT, Stular T, Lesnik S, Woodcock HL, Brooks BR, Janezic D (2015) ProBiS–CHARMMing: Web Interface for prediction and optimization of ligands in protein binding sites. J Chem Inf Model 55:2308–2314. https://doi.org/10.1021/acs.jcim.5b00534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Baek M, Park T, Heo L, Park C, Seok C (2017) GalaxyHomomer: a web server for protein homo-oligomer structure prediction from a monomer sequence or structure. Nucleic Acids Res 45(W1):W320–W324. https://doi.org/10.1093/nar/gkx246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-Pdb Viewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723. https://doi.org/10.1002/elps.1150181505

    Article  CAS  PubMed  Google Scholar 

  43. Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three–dimensional structures of proteins. Nucleic Acids Res 35(Web Server Issue):W407–W410. https://doi.org/10.1093/nar/gkm290

    Article  PubMed  PubMed Central  Google Scholar 

  44. Tina KG, Bhadra B, Srinivasan N (2007) PIC: Protein Interactions Calculator. Nucleic Acids Res 35(Web Server issue):W473–W476. https://doi.org/10.1093/nar/gkm423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comp Chem 31:455–461. https://doi.org/10.1002/jcc.21334

    Article  CAS  Google Scholar 

  46. Laskowski RA, Swindells MB (2011) LigPlot+: multiple ligand–protein interaction diagrams for drug discovery. J Chem Inf Model 51:2778–2786. https://doi.org/10.1021/ci200227u

    Article  CAS  PubMed  Google Scholar 

  47. Sousa da Silva AW, Vranken WF (2012) ACPYPE—AnteChamber PYthon Parser interfacE. BMC Res Notes 5:367. https://doi.org/10.1186/1756-0500-5-367

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, Dror RO, Shaw DE (2010) Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins 78:1950–1958. https://doi.org/10.1002/prot.22711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38. https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  PubMed  Google Scholar 

  50. Valdés-Tresanco MS, Valdés-Tresanco ME, Valiente PA, Moreno E (2021) gmx_MMPBSA: a new tool to perform end-state free energy calculations with GROMACS. J Chem Theory Comput 17:6281–6291. https://doi.org/10.1021/acs.jctc.1c00645

    Article  CAS  PubMed  Google Scholar 

  51. Miller BR 3rd, McGee TD Jr, Swails JM, Homeyer N, Gohlke H, Roitberg AE (2012) MMPBSA.py: an efficient program for end-state free energy calculations. J Chem Theory Comput 8:3314–3321. https://doi.org/10.1021/ct300418h

    Article  CAS  PubMed  Google Scholar 

  52. Moodie SL, Mitchell JB, Thornton JM (1996) Protein recognition of adenylate: an example of a fuzzy recognition template. J Mol Biol 263:486–500. https://doi.org/10.1006/jmbi.1996.0591

    Article  CAS  PubMed  Google Scholar 

  53. Denessiouk KA, Rantanen VV, Johnson MS (2001) Adenine recognition: a motif present in ATP-, CoA-, NAD-, NADP-, and FAD-dependent proteins. Proteins 44:282–291. https://doi.org/10.1002/prot.1093

    Article  CAS  PubMed  Google Scholar 

  54. Shulman-Peleg A, Nussinov R, Wolfson HJ (2004) Recognition of functional sites in protein structures. J Mol Biol 339:607–633. https://doi.org/10.1016/j.jmb.2004.04.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Naderi M, Lemoine JM, Govindaraj RG, Kana OZ, Feinstein WP, Brylinski M (2019) Binding site matching in rational drug design: algorithms and applications. Brief Bioinform 20:2167–2184. https://doi.org/10.1093/bib/bby078

    Article  PubMed  Google Scholar 

  56. Konc J, Janezic D (2010) ProBis algorithm for detection of structurally similar protein binding sites by local structural alignment. Bioinformatics 26:1160–1168. https://doi.org/10.1093/bioinformatics/btq100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Schoch GA, Yano JK, Sansen S, Dansette PM, Stout CD, Johnson EF (2008) Determinants of cytochrome P450 2C8 substrate binding: structures of complexes with montelukast, troglitazone, felodipine, and 9-cis-retinoic acid. J Biol Chem 283:17227–17237. https://doi.org/10.1074/jbc.M802180200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Daily EB, Aquilante CL (2009) Cytochrome P450 2C8 pharmacogenetics: a review of clinical studies. Pharmacogenomics 10:1489–1510. https://doi.org/10.2217/pgs.09.82

    Article  CAS  PubMed  Google Scholar 

  59. Saad JS, Ablan SD, Ghanam RH, Kim A, Andrews K, Nagashima K, Soheilian F, Freed EO, Summers MF (2008) Structure of the myristylated human immunodeficiency virus type 2 matrix protein and the role of phosphatidylinositol-(4,5)-bisphosphate in membrane targeting. J Mol Biol 382:434–447. https://doi.org/10.1016/j.jmb.2008.07.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Schuetz A, Min J, Antoshenko T, Wang CL, Allali-Hassani A, Dong A, Loppnau P, Vedadi M, Bochkarev A, Sternglanz R, Plotnikov AN (2007) Structural basis of inhibition of the human NAD+-dependent deacetylase SIRT5 by suramin. Structure 15:377–389. https://doi.org/10.1016/j.str.2007.02.002

    Article  CAS  PubMed  Google Scholar 

  61. Du Y, Hu H, Hua C, Du K, Wei T (2018) Tissue distribution, subcellular localization and enzymatic activity analysis of human SIRT5 isoforms. Biochem Biophys Res Commun 503:763–769. https://doi.org/10.1016/j.bbrc.2018.06.073

    Article  CAS  PubMed  Google Scholar 

  62. Rajagopalan S, Wang C, Yu K, Kuzin AP, Richter F, Lew S, Miklos AE, Matthews ML, Seetharaman J, Su M, Hunt JF, Cravatt BF, Baker D (2014) Design of activated serine-containing catalytic triads with atomic-level accuracy. Nat Chem Biol 10:386–391. https://doi.org/10.1038/nchembio.1498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Li S, Tietz DR, Rutaganira FU, Kells PM, Anzai Y, Kato F, Pochapsky TC, Sherman DH, Podust LM (2012) Substrate recognition by the multifunctional Cytochrome P450 Mycg in mycinamicin hydroxylation and epoxidation reactions. J Biol Chem 287:37880–37890. https://doi.org/10.1074/jbc.M112.410340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hassan SS, Cramer WA (2014) Internal lipid architecture of the hetero-oligomeric cytochrome b6f complex. Structure 22:1008–1015. https://doi.org/10.1016/j.str.2014.05.004

    Article  CAS  Google Scholar 

  65. Gadola SD, Zaccai NR, Harlos K, Shepherd D, Castro-Palomino JC, Ritter G, Schmidt RR, Jones EY, Cerundolo V (2002) Structure of human CD1b with bound ligands at 2.3 Å, a maze for alkyl chains. Nat Immunol 3:721–726. https://doi.org/10.1038/ni821

    Article  CAS  PubMed  Google Scholar 

  66. Cherezov V, Clogston J, Papiz MZ, Caffrey M (2006) Room to move: crystallizing membrane proteins in swollen lipidic mesophases. J Mol Biol 357:1605–1618. https://doi.org/10.1016/j.jmb.2006.01.049

    Article  CAS  PubMed  Google Scholar 

  67. Mazor Y, Nataf D, Toporik H, Nelson N (2014) Crystal structures of virus-like photosystem I complexes from the mesophilic cyanobacterium Synechocystis PCC 6803. Elife 3:e01496–e01496. https://doi.org/10.7554/eLife.01496

    Article  PubMed Central  Google Scholar 

  68. Schulte T, Sharples FP, Hiller RG, Hofmann E (2009) X-Ray structure of the high-salt form of the Peridinin-Chlorophyll a-protein from the dinoflagellate Amphidinium Carterae: modulation of the spectral properties of pigments by the protein environment. Biochemistry 48:4466–4475. https://doi.org/10.1021/bi802320q

    Article  CAS  PubMed  Google Scholar 

  69. Kim MJ, Wainwright HC, Locketz M, Bekker LG, Walther GB, Dittrich C, Visser A, Wang W, Hsu FF, Wiehart U, Tsenova L, Kaplan G, Russell DG (2010) Caseation of human tuberculosis granulomas correlates with elevated host lipid metabolism. EMBO Mol Med 2:258–274. https://doi.org/10.1002/emmm.201000079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cha D, Cheng D, Liu M, Zeng Z, Hu X, Guan W (2009) Analysis of fatty acids in sputum from patients with pulmonary tuberculosis using gas chromatography-mass spectrometry preceded by solid-phase microextraction and post-derivatization on the fiber. J Chromatogr A 1216:1450–1457. https://doi.org/10.1016/j.chroma.2008.12.039

    Article  CAS  PubMed  Google Scholar 

  71. Mourão MPB, Denekamp I, Kuijper S, Kolk AHJ, Janssen HG (2016) Hyphenated and comprehensive liquid chromatography × gas chromatography-mass spectrometry for the identification of Mycobacterium tuberculosis. J Chromatogr A 1439:152–160. https://doi.org/10.1016/j.chroma.2015.10.054

    Article  CAS  PubMed  Google Scholar 

  72. Forrellad MA, McNeil M, de la Paz SM, Blanco FC, Garcia E, Klepp LI, Huff J, Niederweis M, Jackson M, Bigi F (2014) Role of the Mce1 transporter in the lipid homeostasis of Mycobacterium tuberculosis. Tuberculosis 94:170–177. https://doi.org/10.1016/j.tube.2013.12.005

    Article  CAS  PubMed  Google Scholar 

  73. Ko J, Park H, Seok C (2012) GalaxyTBM: template–based modeling by building a reliable core and refining unreliable local regions. BMC Bioinformatics 13:198. https://doi.org/10.1186/1471-2105-13-198

    Article  PubMed  PubMed Central  Google Scholar 

  74. Zhang Y, Skolnick J (2005) TM–align: a protein structure alignment algorithm based on the TM–score. Nucleic Acids Res 33:2302–2309. https://doi.org/10.1093/nar/gki524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Soding J (2005) Protein homology detection by HMM–HMM comparison. Bioinformatics 21:951–960. https://doi.org/10.1093/bioinformatics/bti125

    Article  PubMed  Google Scholar 

  76. Lord DM, Baran AU, Soo VWC, Wood TK, Peti W, Page R (2014) McbR/YncC: implications for the mechanism of ligand and DNA binding by a bacterial GntR transcriptional regulator involved in biofilm formation. Biochemistry 53:7223–7231. https://doi.org/10.1021/bi500871a

    Article  CAS  PubMed  Google Scholar 

  77. Colovos C, Yeates TO (1993) Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 2:1511–1519. https://doi.org/10.1002/pro.5560020916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bowie JU, Luthy R, Eisenberg D (1991) A method to identify protein sequences that fold into a known three-dimensional structure. Science 253:164–170. https://doi.org/10.1126/science.1853201

    Article  CAS  PubMed  Google Scholar 

  79. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK—a program to check the stereochemical quality of protein structures. J App Crystallogr 26:283–291. https://doi.org/10.1107/S0021889892009944

    Article  CAS  Google Scholar 

  80. Roy S, Maheshwari N, Chauhan R, Sen NK, Sharma A (2011) Structure prediction and functional characterization of secondary metabolite proteins of Ocimum. Bioinformation 6:315–319. https://doi.org/10.6026/97320630006315

    Article  PubMed  PubMed Central  Google Scholar 

  81. Sippl MJ (1993) Recognition of errors in three-dimensional structures of proteins. Proteins 17:355–362. https://doi.org/10.1002/prot.340170404

    Article  CAS  PubMed  Google Scholar 

  82. Ramachandran GN, Ramachandran C, Sasisekharan V (1963) Stereochemistry of polypeptide chain configurations. J Mol Biol 7:95–99. https://doi.org/10.1016/s0022-2836(63)80023-6

    Article  CAS  PubMed  Google Scholar 

  83. Flory PJ (1969) Statistical mechanics of chain molecules. Wiley, New York, pp 30–31. https://doi.org/10.1002/app.1970.070140125

  84. Tanford C (1968) Protein denaturation. Adv Protein Chem 23:121–282. https://doi.org/10.1016/s0065-3233(08)60401-5

    Article  CAS  PubMed  Google Scholar 

  85. Sippl MJ (1990) Calculation of conformational ensembles from potentials of mean force. An approach to the knowledge-based prediction of local structures in globular proteins. J Mol Biol 213:859–883. https://doi.org/10.1016/s0022-2836(05)80269-4

    Article  CAS  PubMed  Google Scholar 

  86. Sippl MJ (1995) Knowledge-based potentials for proteins. Curr Opin Struct Biol 5:229–235. https://doi.org/10.1016/0959-440x(95)80081-6

    Article  CAS  PubMed  Google Scholar 

  87. Sippl MJ (1993) Boltzmann’s principle, knowledge-based mean fields and protein folding. An approach to the computational determination of protein structures. J Comput Aided Mol Des 7:473–501. https://doi.org/10.1007/BF02337562

    Article  CAS  PubMed  Google Scholar 

  88. Jones S, Thornton JM (1996) Principles of protein–protein interactions. Proc Natl Acad Sci USA 93:13–20. https://doi.org/10.1073/pnas.93.1.13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Keskin O, Gursoy A, Ma B, Nussinov R (2008) Principles of protein–protein interactions: what are the preferred ways for proteins to interact? Chem Rev 108:1225–1244. https://doi.org/10.1021/cr040409x

    Article  CAS  PubMed  Google Scholar 

  90. Tsai CJ, Lin SL, Wolfson HJ, Nussinov R (1997) Studies of protein–protein interfaces: a statistical analysis of the hydrophobic effect. Protein Sci 6:53–64. https://doi.org/10.1002/pro.5560060106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tsai CJ, Nussinov R (1997) Hydrophobic folding units at protein–protein interfaces: Implications to protein folding and to protein–protein association. Protein Sci 6:1426–1437. https://doi.org/10.1002/pro.5560060707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zhang X, Perez-Sanchez H, Lightstone FC (2017) A comprehensive docking and MM/GBSA rescoring study of ligand recognition upon binding antithrombin. Curr Top Med Chem 17:1631–1639. https://doi.org/10.2174/1568026616666161117112604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Beveridge DL, DiCapua FM (1989) Free energy via molecular simulation: applications to chemical and biomolecular systems. Annu Rev Biophys Biophys Chem 18:431–492. https://doi.org/10.1146/annurev.bb.18.060189.002243

    Article  CAS  PubMed  Google Scholar 

  94. Zhang X, Péréz-Sánchez H, Lightstone F (2015) Molecular dynamics simulations of ligand recognition upon binding antithrombin: a MM/GBSA approach. In: Ortuño F, Rojas I (eds) Bioinformatics and biomedical engineering, vol 9044. Springer, Cham, pp 584–593. https://doi.org/10.1007/978-3-319-16480-9

    Chapter  Google Scholar 

  95. Verma S, Grover S, Tyagi C, Goyal S, Jamal S, Singh A, Grover A (2016) Hydrophobic interactions are a key to MDM2 inhibition by polyphenols as revealed by molecular dynamics simulations and MM/PBSA free energy calculations. PLoS ONE 11(2):e0149014. https://doi.org/10.1371/journal.pone.0149014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the grants from SERB and CSIR (Govt. of India) to Dr. Amitava Bandhu (Grant Nos: SB/YS/LS-184/2014 and 27/(0327)/17/EMR-II dated: 12.04.2017). Mrs. Dipanwita Maity received fellowship from SERB (Govt. of India). Mr. Dheeraj Singh is the recipient of institute fellowship from National Institute of Technology Warangal, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amitava Bandhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 369 kb)

Supplementary file2 (PDB 151 kb)

Supplementary file3 (PDB 302 kb)

Supplementary file4 (PDB 227 kb)

Supplementary file5 (PDB 233 kb)

Supplementary file6 (PDB 233 kb)

Supplementary file7 (PDB 233 kb)

Supplementary file8 (PDB 233 kb)

Supplementary file9 (TIF 244 kb)

Supplementary file10 (TIF 233 kb)

Supplementary file11 (TIF 169 kb)

Supplementary file12 (XLSX 68 kb)

Supplementary file13 (TXT 1 kb)

Supplementary file14 (PDBQT 27 kb)

Supplementary file15 (PDBQT 28 kb)

Supplementary file16 (PDBQT 25 kb)

Supplementary file17 (PDBQT 22 kb)

Supplementary file18 (TXT 1 kb)

Supplementary file19 (PDBQT 22 kb)

Supplementary file20 (TXT 1 kb)

Supplementary file21 (PDBQT 27 kb)

Supplementary file22 (TXT 1 kb)

Supplementary file23 (PDBQT 25 kb)

Supplementary file24 (TXT 1 kb)

Supplementary file25 (TXT 1 kb)

Supplementary file26 (PDBQT 28 kb)

Supplementary file27 (TXT 1 kb)

Supplementary file28 (TXT 1 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maity, D., Singh, D. & Bandhu, A. Mce1R of Mycobacterium tuberculosis prefers long-chain fatty acids as specific ligands: a computational study. Mol Divers 27, 2523–2543 (2023). https://doi.org/10.1007/s11030-022-10566-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-022-10566-7

Keywords

Navigation