Skip to main content

Advertisement

Log in

Novel heterocyclic 1,3,4-oxadiazole derivatives of fluoroquinolones as a potent antibacterial agent: Synthesis and computational molecular modeling

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Design and synthesis of novel series of 1,3,4-oxadiazoles containing FQs derivatives and screened their antibacterial, antimycobacterial properties. The synthesized compounds were characterized by different spectral techniques like IR, 1H NMR, 13C NMR, mass and elemental analysis. The results of the antimicrobial activity and compounds 6d, 6b, 6e, 6f and 6a demonstrated potent antibacterial activities with zone of inhibition of 42, 36, 37, 34 and 30 mm against S. aureus, E. faecalis, S. pneumoniae, E. coli and K. pneumoniae, respectively. 1,3,4-Oxadiazole derivatives 6a, 6b, 6 g were showed excellent antimycobacterial activity against M. smegmatis H37Rv with MICs 22.35, 16.20, 20.28 µg/mL, respectively. FQs 6d and 6b exhibited highest hydrogen bonding interactions with Asp83 (3.11 A˚), Ser80 (2.15 A˚) Asp27 (σ-σ), Arg87 (Π-Π), Arg87 (Π-Π), Ser80 (σ-σ), Ala84 (σ-σ) and binding energies ΔG =  − 6.41, − 6.97 kcal/mol with active site of topoisomerase-IV from S. pneumoniae [4KPE]. We performed a computational investigation of compounds 6a–j for their absorption, distribution, metabolism and excretion (ADME) properties by using the Molinspiration, Molsoft toolkits. The ligands 6f, 6d and 6b reveal the highest pharmacokinetic properties and possess maximum drug-likeness model score 1.59, 1.46 and 1.23, respectively.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

PSA:

Polar surface area

LGA :

Lamarckian genetic algorithm

NRL :

Nuclear receptor legend

ICM :

 Ion channel modulator

ADME :

 Absorption, distribution, metabolism and excretion

MIC :

Minimum inhibitory concentration

PDBQT:

 Protein data bank includes partial charges ('Q') and atom types ('T')

ADT:

 Autodock tools

References

  1. Drlica K (1999) Mechanism of fluoroquinolone action. Curr Opin Microbiol 2:504–508

    Article  CAS  PubMed  Google Scholar 

  2. Srinivasan S, Beema Shafreen RM, Nithyanand P, Manisankar P, Pandian SK (2010) Synthesis and in vitro antimicrobial evaluation of novel fluoroquinolone derivatives. Eur J Med Chem 45:6101–6105

    Article  CAS  PubMed  Google Scholar 

  3. Shandil RK, Jayaram R, Kaur P, Gaonkar S, Suresh BL, Mahesh BN, Jayashree R, Nandi V, Bharath S, Balasubramanian V (2007) Moxifloxacin, ofloxacin, sparfloxacin, and ciprofloxacin against mycobacterium tuberculosis: evaluation of in vitro and pharmacodynamic indices that best predict in vivo efficacy. Antimicrob Agents Chemother 51:576–582

    Article  CAS  PubMed  Google Scholar 

  4. Gumbo T, Louie A, Deziel MR, Drusano GL (2005) Pharmacodynamic evidence that ciprofloxacin failure against tuberculosis is not due to poor microbial kill but to rapid emergence of resistance. Antimicrob Agents Chemother 49:3178–3181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sharma PC, Jain A, Jain S, Pahwa R, Yar MS (2010) Ciprofloxacin: review on developments in synthetic, analytical, and medicinal aspects. J Enzyme Inhib Med Chem 25:577–589

    Article  CAS  PubMed  Google Scholar 

  6. Daneshtalab M, Ahmed A (2011) Nonclassical biological activities of quinolone derivatives. J Pharm Sci 15:52–59

    Google Scholar 

  7. Li J, Li S, Bai C, Liu H, Gramatica P (2013) Structural requirements of 3-carboxyl-4(1H)-quinolones as potential antimalarials from 2D and 3D QSAR analysis. J Mol Graph Model 44:266–277

    Article  CAS  PubMed  Google Scholar 

  8. Pudlo M, Luzet V, Ismaili L, Tomassoli I, Iutzeler A, Refouvelet B (2014) Quinolone–benzyl piperidine derivatives as novel acetylcholinesterase inhibitor and antioxidant hybrids for alzheimer disease. Bioorg Med Chem 22:2496–2507

    Article  CAS  PubMed  Google Scholar 

  9. Tejeswara Rao A, Naveen P, Parsharamulu R, Janardhan S, Narahari Sastry G, Sudha Sravanti K, Ramesh U, Jaya Shree A (2016) Design, synthesis and biological activity evaluation of novel pefloxacin derivatives as potential antibacterial agents. Med Chem Res 25:977–993

    Article  CAS  Google Scholar 

  10. Verma G, Chashoo G, Ali A, Khan MF, Akhtar W, Ali I, Akhtar M, Alam MM, Shaquiquzzaman M (2018) Synthesis of pyrazole acrylic acid based oxadiazole and amide derivatives as antimalarial and anticancer agents. Bioorg Chem 77:106–124

    Article  CAS  PubMed  Google Scholar 

  11. Abd Ellah HS, Abdel-Aziz M, Shoman ME, Beshr EAM, Kaoud TS, Ahmed ASFF (2017) New 1,3,4-oxadiazole/oxime hybrids: design, synthesis, anti-inflammatory, COX inhibitory activities and ulcerogenic liability. Bioorg Chem 74:15–29

    Article  CAS  PubMed  Google Scholar 

  12. Ahmed MN, Sadiq B, Al-Masoudi NA, Yasin KA, Hameed S, Mahmood T, Ayub K, Tahir MN (2018) synthesis, crystal structures, computational studies and antimicrobial activity of new designed bis((5-aryl-1,3,4-oxadiazol-2-yl)thio) alkanes. J Mol Struct 1155:403–413

    Article  CAS  Google Scholar 

  13. Tantray MA, Khan I, Hamid H, Alam MS, Dhulap A, Kalam A (2018) Synthesis of benzimidazole-linked-1,3,4-oxadiazole carboxamides as GSK-inhibitors with in vivo antidepressant activity. Bioorg Chem 77:393–401

    Article  CAS  PubMed  Google Scholar 

  14. Manjunatha K, Poojary B, Lobo PL, Fernandes J, Kumari NS (2010) Synthesis and biological evaluation of some 1,3,4-oxadiazole derivatives. Eur J Med Chem 45:5225–5233

    Article  CAS  PubMed  Google Scholar 

  15. Yadagiri B, Gurrala S, Bantu R, Nagarapu L, Polepalli S, Srujana G, Jain N (2015) Synthesis and evaluation of benzosuberone embedded with 1,3,4-oxadiazole, 1,3,4-thiadiazole and 1,2,4-triazole moieties as new potential anti proliferative agents. Bioorg Med Chem Lett 25:2220–2224

    Article  CAS  PubMed  Google Scholar 

  16. Hajimahdi Z, Zarghi A, Zabihollahi R, Aghasadeghi MR (2013) Synthesis, biological evaluation, and molecular modeling studies of new 1,3,4-oxadiazole and 1,3,4-thiadiazole-substituted 4-Oxo-4H-pyrido[1-a]pyrimidines as anti-HIV-1 agents. Med Chem Res 22:2467–2475

    Article  CAS  Google Scholar 

  17. Xu WM, Li SZ, He M, Yang S, Li XY, Li P (2013) Synthesis and bioactivities of novel thioether/sulfone derivatives containing 1,2,3-thiadiazole and 1,3,4-oxadiazole/ thiadiazole moiety. Bioorg Med Chem Lett 23:5821–5824

    Article  CAS  PubMed  Google Scholar 

  18. De Souza MVN, Vasconcelos TR, Almeida MV, Cardoso SH (2006) Fluoroquinolones: an important class of antibiotics against tuberculosis. Curr Med Chem 13:455–463

    Article  PubMed  Google Scholar 

  19. Hooper DC, Wolfson JS (1993) Mechanisms of quinolone action and bacterial killing. In: Quinolone antimicrobial agents. 2nd ed. Washington, D. C. American Society for Microbiology pp. 53–57.

  20. Xu WM, He J, He M, Han FF, Chen XH, Pan ZX, Wang J, Tong MG (2011) Synthesis and antifungal activity of novel sulfone derivatives containing 1,3,4-oxadiazole moieties. Molecules 16:9129–9141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xu WM, Yang S, Bhadury P, He J, He M, Gao LL, Hu DY, Song BA (2011) Synthesis and bioactivity of novel sulfone derivatives containing 2,4-dichlorophenyl substituted 1,3,4-oxadiazole/thiadiazole moiety as chitinase inhibitors. Pestic Biochem Phys 101:6–15

    Article  CAS  Google Scholar 

  22. Li P, Shi L, Yang X, Yang L, Chen XW, Wu F, Song BA (2014) Design, synthesis, and antibacterial activity against rice bacterial leaf blight and leaf streak of 2,5-substituted-1,3,4-oxadiazole/thiadiazole sulfone derivative. Bioorg Med Chem Lett 24:1677–1680

    Article  CAS  PubMed  Google Scholar 

  23. Vedula MS, Pulipaka AB, Venna CV, Chintakunta K, Jinnapally S, Kattuboina VA (2003) New styryl sulphones as anticancer agents. Eur J Med Chem 38:811–824

    Article  CAS  PubMed  Google Scholar 

  24. Scarf ME, Siegfried BD, Meinke LJ, Chandler LD (2000) Fipronil metabolism, oxidative sulfone formation and toxicity among organophosphate and carbamates resistant and susceptible western corn rootworm populations. Pest Manag Sci 56:757–766

    Article  Google Scholar 

  25. Silvestri R, Artico M, la Regina G, de Martino G, la Colla M, Loddo R, la Colla P (2004) Anti-HIV-1 activity of pyrrole aryl sulfone (PAS) derivatives: Synthesis and SAR studies of novel esters and amides at the position 2 of the pyrrole nucleus. Farmaco 59:201–210

    Article  CAS  PubMed  Google Scholar 

  26. Oliveira CS, Lira BF, Barbosa Filho JM, Fernandez Lorenzo JG, Athayde-Filho PF (2012) Synthetic approaches and pharmacological activity of 1,3,4-oxadiazoles: a review of the literature from 2000–2012. Molecules 17:10192–10231

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Leo E, Gould KA, Pan XS, Capranico G, Sanderson MR, Palumbo M, Fischer LM (2005) Novel symmetric and asymmetric DNA scission determinants for streptococcus pneumoniae topoisomerase IV and gyrase are clustered at the DNA breakage site. J Biol Chem 280:14252–14263

    Article  CAS  PubMed  Google Scholar 

  28. Badrinarayan P, Sastry GN (2012) Virtual filters for the design of type II p38 MAP kinase inhibitors: a fragment based library generation approach. J Mol Gr Model 34:89–100

    Article  CAS  Google Scholar 

  29. Collin F, Karkare S, Maxwell A (2011) Exploiting bacterial DNA gyrase as a drug target: current state and perspectives. Appl Microbiol Biotechnol 92:479–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Blower TR, Williamson BH, Kerns RJ, Berger JM (2016) Crystal structure and stability of gyrase fluoroquinolone cleaved complexes from Mycobacterium tuberculosis. Proc Natl Acad Sci USA 113:1706–1713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mahadevi AS, Sastry GN (2013) Cation-p interaction: its role and relevevance in chemistry, biology, and material science. Chem Rev 113:2100–2138

    Article  CAS  PubMed  Google Scholar 

  32. Lipinski CA, Lombardo F, Dominy BW, Feeney P (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25

    Article  CAS  Google Scholar 

  33. Fliur M, Zinaida R, Serghei P, Veaceslav B, Ghenadie R, Nathaly S, Anatholy D, Athina G, Robert R (2011) The structure anti tuberculosis activity relationships study in a series of 5-aryl-2-thio-1,3,4-oxadiazole derivatives. Bioorg Med Chem 19:6792–6807

    Article  CAS  Google Scholar 

  34. Rakesh R, Prabhakar S, Shirodkar Y (2009) Oxadiazole: a biologically important heterocycle. Der Pharma Chemica 1:130–140

    Google Scholar 

  35. Muegge I (2003) Selection criteria for drug-like compounds. Med Res Rev 23:302–321

    Article  CAS  PubMed  Google Scholar 

  36. Tejeswara Rao A, Jaya Shree A (2019) Novel 7-substituted fluoroquinolone citrate conjugates as powerful antibacterial and anticancer agents: synthesis and molecular docking studies. Curr Org Chem 23:1991–2002

    Google Scholar 

  37. Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kapple KD (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45:2615–2623

    Article  CAS  PubMed  Google Scholar 

  38. Ertl P, Rohde B, Selzer P (2000) Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J Med Chem 43:3714–3717

    Article  CAS  PubMed  Google Scholar 

  39. Indresh Kumar M, Chaitanya Kumar T, Jyotsna Sharma S, Genba T, Preeti Ch, Manoj Kumar S, Indu Shekhar T, Mukun D, Prasad R, Virander Singh C (2013) Mechanism of action of novel synthetic dodeca peptides against Candida albicans. Biochim Biophys Acta General Subj 1830:5193–5203

    Article  CAS  Google Scholar 

  40. Sarika P, Virander Singh C (2011) Rationale-based, de novo design of dehydro phenylalanine-containing antibiotic peptides and systematic modification in sequence for enhanced potency. Antimicrob Agents Chemother 55:2178–2188

    Article  CAS  Google Scholar 

  41. Tejeswara Rao A, Naveen P, Parsharamulu R, Janardhan S, Narahari Sastry G, Sudha Sravanti K, Ramesh U, Jaya Shree A (2016) Design, synthesis and biological activity evaluation of novel pefloxacin derivatives as potential antibacterial agents. Med Chem Res 25:977–993

    Article  CAS  Google Scholar 

  42. Laskowski RA (2009) PDB sum new things. Nucleic Acids Res 37:D355–D359

    Article  CAS  PubMed  Google Scholar 

  43. https://www.acdlabs.com

  44. Morris GM, Huey R, Lindstrom W, Michel F, Sanner MF, David RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Morris GM, Goodsell DS, Robert S, Halliday R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  46. https://www.rcsb.org/structure/4kpe

Download references

Acknowledgements

ATR is thankful to CCST, IST, JNTUH University, Hyderabad, for providing laboratory and other facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tejeswara Rao Allaka.

Ethics declarations

Conflict of interest

The author declare that they have no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary material is available on the publisher’s web site along with the published article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allaka, T.R., Kummari, B., Polkam, N. et al. Novel heterocyclic 1,3,4-oxadiazole derivatives of fluoroquinolones as a potent antibacterial agent: Synthesis and computational molecular modeling. Mol Divers 26, 1581–1596 (2022). https://doi.org/10.1007/s11030-021-10287-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-021-10287-3

Keyword

Navigation