Skip to main content

Advertisement

Log in

Vitamin C and Vitamin D3 show strong binding with the amyloidogenic region of G555F mutant of Fibrinogen A alpha-chain associated with renal amyloidosis: proposed possible therapeutic intervention

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

G555F mutant of Fibrinogen A alpha-chain (FGA) is reported to be associated with kidney amyloidosis. In the current study, we have modelled the G555F mutant and examined the mutation’s effect on the structural and functional level. We have also docked Vitamin C and D3 on the mutant’s amyloidogenic region to identify if these vitamins can bind amyloidogenic regions. Further, we analyzed if they could prevent or modulate amyloid formation by stopping critical interactions in amyloidogenic regions in FGA. We used the wild type FGA model protein as a control. Our docking and molecular dynamics simulation results indicate stronger Vitamin D3 binding than Vitamin C to the amyloidogenic region of the mutant protein. The RMSD, radius of gyration, and RMSF values were higher for the G555F mutant than the FGA wild type protein. Overall, the results support these vitamins’ potential as a therapeutic and anti-amyloidogenic agent for FGA renal amyloidosis.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sivalingam V, Patel B (2016) Familial mutations in fibrinogen Aα (FGA) chain identified in renal amyloidosis increase in vitro amyloidogenicity of FGA fragment. Biochimie 127:44–49. https://doi.org/10.1016/j.biochi.2016.04.020

    Article  CAS  PubMed  Google Scholar 

  2. Serpell LC, Benson M, Liepnieks JJ, Fraser PE (2007) Structural analyses of fibrinogen amyloid fibrils. Amyloid 14:199–203. https://doi.org/10.1080/13506120701461111

    Article  CAS  PubMed  Google Scholar 

  3. Grateau G, Delpech M (2008) Fibrinogen, amyloid proteins. Wiley, New York, pp 657–666

    Google Scholar 

  4. Hanss M, Biot F (2001) A database for human fibrinogen variants. Ann N Y Acad Sci 936:89–90. https://doi.org/10.1111/j.1749-6632.2001.tb03495.x

    Article  CAS  PubMed  Google Scholar 

  5. Berman H, Westbrook J, Feng Z, Gilliland G, Bhat T, Weissig H, Shindyalov I, Bourne P (2000) The protein data bank. Nucleic Acids Res 28:235–242. https://doi.org/10.1093/nar/28.1.235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5:725–738. https://doi.org/10.1038/nprot.2010.5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y (2015) The I-TASSER Suite: protein structure and function prediction. Nat Methods 12:7–8. https://doi.org/10.1038/nmeth.3213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yang J, Zhang Y (2015) I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res 43:W174–W181. https://doi.org/10.1093/nar/gkv342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wu S, Zhang Y (2007) LOMETS: a local meta-threading-server for protein structure prediction. Nucleic Acids Res 35:3375–3382. https://doi.org/10.1093/nar/gkm251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Studer G, Rempfer C, Waterhouse MA et al (2020) QMEANDisCo—distance constraints applied on model quality estimation. Bioinformatics 36(6):1765–1771. https://doi.org/10.1093/bioinformatics/btz828

    Article  CAS  PubMed  Google Scholar 

  11. DeLano WL (2002) Pymol: An open-source molecular graphics tool. CCP4 Newsletter Protein Crystallography 40:82–92

    Google Scholar 

  12. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723. https://doi.org/10.1002/elps.1150181505

    Article  CAS  PubMed  Google Scholar 

  13. Kundu D, Umesh Dubey VK (2020) Interaction of selected biomolecules and metabolites with amyloidogenic proteins. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2020.1760138

    Article  PubMed  PubMed Central  Google Scholar 

  14. Umesh KD, Selvaraj C, Singh SK, Dubey VK (2020) Identification of new anti-nCoV drug chemical compounds from Indian spices exploiting SARS-CoV-2 main protease as target. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2020.1763202

    Article  PubMed  Google Scholar 

  15. Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF Chimera—a visualisation system for exploratory research and analysis. J Comput Chem 25:1605–1612. https://doi.org/10.1002/jcc.20084

    Article  CAS  PubMed  Google Scholar 

  16. Kumar P, Henikoff S, Ng PC (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 4:1073–1081. https://doi.org/10.1038/nprot.2009.86

    Article  CAS  PubMed  Google Scholar 

  17. Sim NL, Kumar P, Hu J, Henikoff S, Schneider G, Ng PC (2012) SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Res 40:W452–W457. https://doi.org/10.1093/nar/gks539 (Epub 2012 Jun 11)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Singh HB, Deka D, Das D, Borbora D (2016) Computational prediction of the effects of non-synonymous single nucleotide polymorphisms in the human Quinone Oxidoreductase 1 (NQO1). Meta Gene. https://doi.org/10.1016/j.mgene.2016.12.008

    Article  PubMed  PubMed Central  Google Scholar 

  19. Choi Y, Sims GE, Murphy S, Miller JR, Chan AP (2012) Predicting the functional effect of amino acid substitutions and indels. PLoS One 7:46688. https://doi.org/10.1371/journal.pone.0046688

    Article  CAS  Google Scholar 

  20. Choi Y (2012) A fast computation of pairwise sequence alignment scores between a protein and a set of single-locus variants of another protein. In: Proceedings of the ACM Conference on Bioinformatics, Computational Biology and Biomedicine (BCB’ 12). ACM, New York, USA, pp 414–417. https://doi.org/10.1145/2382936.2382989

  21. Choi Y, Chan AP (2015) PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics 31(16):2745–2747. https://doi.org/10.1093/bioinformatics/btv195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Forli S, Huey R, Pique ME, Sanner MF, Goodsell DS, Olson AJ (2016) Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nat Protoc 11(5):905–919. https://doi.org/10.1038/nprot.2016.051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Venkataesan KS, Shukla KA, Dubey VK (2010) Molecular docking studies of selected tricyclic and quinone derivatives on trypanothione reductase of Leishmania infantum. J Comput Chem. https://doi.org/10.1002/jcc.21538

    Article  Google Scholar 

  24. Morris GM, Olson AJ (1996) Automated docking of flexible ligands: applications of AutoDock. J Mol Recogn 9(1):1–5. https://doi.org/10.1002/(sici)1099-1352(199601)9:1%3c1::aid-jmr241%3e3.0.co;2-6

    Article  Google Scholar 

  25. Raj S, Sasidharan S, Dubey VK, Saudagar P (2019) Identification of lead molecules against potential drug target protein MAPK4 from L. donovani: an in-silico approach using docking, molecular dynamics and binding free energy calculation. PLOS One 14(8):e022133. https://doi.org/10.1371/journal.pone.0221331

    Article  CAS  Google Scholar 

  26. Dassault Systèmes (2020) BIOVIA, Discovery Studio Visualiser, v.20.1.0.19295, San Diego

  27. Salentin S et al (2015) PLIP: fully automated protein-ligand interaction profiler. Nucl Acids Res 43(W1):W443–W447. https://doi.org/10.1093/nar/gkv315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Borkotoky S, Banerjee M (2020) A computational prediction of SARS-CoV-2 structural protein inhibitors from Azadirachta indica (Neem). J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2020.1774419

    Article  PubMed  PubMed Central  Google Scholar 

  29. Van Aalten DMF, Bywater R, Findlay JBC et al (1996) PRODRG, a program for generating molecular topologies and unique molecular descriptors from coordinates of small molecules. J Comput Aided Mol Des 10:255–262. https://doi.org/10.1007/BF00355047

    Article  PubMed  Google Scholar 

  30. Gupta S, Dasmahapatra AK (2020) Destabilisation potential of phenolics on Aβ fibrils: mechanistic insights from molecular dynamics simulation. Phys Chem Chem Phys R Soc Chem Publ. https://doi.org/10.1039/d0cp02459g

    Article  Google Scholar 

  31. Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126(1):014101. https://doi.org/10.1063/1.2408420

    Article  CAS  PubMed  Google Scholar 

  32. Kawata M, Nagashima U (2001) Particle mesh Ewald method for three-dimensional systems with two-dimensional periodicity. Chem Phys Lett 340(1):165–172. https://doi.org/10.1016/S0009-2614(01)00393-1

    Article  CAS  Google Scholar 

  33. Hess B, Bekker H, Berendsen HJ, Fraaije JG (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18(12):1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12

    Article  CAS  Google Scholar 

  34. Kar P, Lipowsky R, Knehct V (2013) Importance of polar solvation and configurational entropy for design of antiretroviral drugs targeting HIV-1 protease. J Phys Chem B 117:5793–5805. https://doi.org/10.1021/jp3085292

    Article  CAS  PubMed  Google Scholar 

  35. Genheden S, Ryde U (2015) The MM/PBSA and MM/GBSA methods to estimate ligand binding affinities. Expert Opin Drug Discov 10(5):449–461. https://doi.org/10.1517/17460441.2015.1032936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Musyoka MT, Kanzi MA, Lobb AK et al (2016) Structure based docking and molecular dynamic studies of Plasmodial cysteine proteases against a South African natural compound and its analogs. Sci Rep 6:23690. https://doi.org/10.1038/srep23690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Berhanu WM, Hansmann UHE (2012) Side-chain hydrophobicity and the stability of Ab16-22 aggregates. Protein Sci 21:1837–1848. https://doi.org/10.1002/pro.2164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577–2637. https://doi.org/10.1002/bip.360221211

    Article  CAS  PubMed  Google Scholar 

  39. Gupta S, Dasmahapatra AK (2019) Caffeine destabilises preformed Ab protofilaments: insights from all-atom molecular dynamics simulation. Phys Chem Chem Phys 21:22067. https://doi.org/10.1039/c9cp04162a

    Article  CAS  PubMed  Google Scholar 

  40. Diana A, Michelin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7:42717. https://doi.org/10.1038/srep42717

    Article  Google Scholar 

  41. Garcia GM, Navarro S et al (2020) Coiled-coil inspired functional inclusion bodies. Microb Cell Fact 19:117. https://doi.org/10.1186/s12934-020-01375-4

    Article  CAS  Google Scholar 

  42. Pelassa I, Corà D, Cesano F, Monje FJ, Montarolo PG, Fiumara F (2014) Association of polyalanine and polyglutamine coiled coils mediates expansion disease-related protein aggregation and dysfunction. Hum Mol Genet 23:3402–3420. https://doi.org/10.1093/hmg/ddu049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Buchan DWA, Jones DT (2019) The PSIPRED protein analysis workbench: 20 years on. Nucleic Acids Res. https://doi.org/10.1093/nar/gkz297

    Article  PubMed  PubMed Central  Google Scholar 

  44. Jones DT (1999) Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292:195–202. https://doi.org/10.1006/jmbi.1999.3091

    Article  CAS  PubMed  Google Scholar 

  45. Singh BK, Sarkar N, Jagannadham MV, Dubey VK (2008) Modeled structure of trypanothione reductase of Leishmania infantum. BMB Rep 41:444–447. https://doi.org/10.5483/bmbrep.2008.41.6.444

    Article  CAS  PubMed  Google Scholar 

  46. Lee J, DubeyVK LLM, Blaber M (2008) A logical OR redundancy within the Asx-Pro-Asx-Gly type I β-turn motif. J Mol Biol 377:1251–1264. https://doi.org/10.1016/j.jmb.2008.01.055

    Article  CAS  PubMed  Google Scholar 

  47. Pande M, Srivastava R (2019) Molecular and clinical insights into protein misfolding and associated amyloidosis. Eur J Med Chem 15(184):111753. https://doi.org/10.1016/j.ejmech.2019.111753 (Epub 2019 Oct 7)

    Article  CAS  Google Scholar 

  48. Taylor GW, Gilbertson JA, Sayed R et al (2019) Proteomic analysis for the diagnosis of fibrinogen Aα-chain amyloidosis. Kidney Int Rep 4(7):977–986. https://doi.org/10.1016/j.ekir.2019.04.007

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

The infrastructure provided by the Department of Biochemistry, Institute of Medical Sciences, BHU is acknowledged. Financial support by DST, Government of India in the form of Woman Scientist A (WoS-A) research grant [Project no: SR/WOS-A/ LS-478-2017] to MP is also acknowledged. DK acknowledges the research fellowship provided by IIT-BHU. The support and the resources provided by the PARAM Shivay Facility under the National Supercomputing Mission, Government of India at the Indian Institute of Technology, Varanasi are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Monu Pande contributed to conceptualisation, validation, formal analysis, resources (docking, simulation, and analysis) writing—original draft, Debanjan Kundu was involved in methodology, resources (docking, simulation, and analysis), and writing—original draft, and Ragini Srivastava contributed to writing, review and editing, and supervision.

Corresponding author

Correspondence to Ragini Srivastava.

Ethics declarations

Conflict of interest

The authors declare that there is no competing interest or any potential conflict which might have influenced the results of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 80 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pande, M., Kundu, D. & Srivastava, R. Vitamin C and Vitamin D3 show strong binding with the amyloidogenic region of G555F mutant of Fibrinogen A alpha-chain associated with renal amyloidosis: proposed possible therapeutic intervention. Mol Divers 26, 939–949 (2022). https://doi.org/10.1007/s11030-021-10205-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-021-10205-7

Keywords

Navigation