Skip to main content
Log in

Bis-spirochromanones as potent inhibitors of Mycobacterium tuberculosis: synthesis and biological evaluation

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

On the basis of reported antimycobacterial property of chroman-4-one pharmacophore, a series of chemically modified bis-spirochromanones were synthesized starting from 2-hydroxyacetophenone and 1,4-dioxaspiro[4.5] decan-8-one using a Kabbe condensation approach. The synthesized bis-spirochromanones were established based on their spectral data and X-ray crystal structure of 6e. All synthesized compounds were evaluated against Mycobacterium tuberculosis H37Rv (ATCC 27294) strain, finding that some products exhibited good antimycobacterial activity with minimum inhibitory concentration as low as \(3.125\, \upmu \hbox {g/mL}\). Docking studies were carried out to identify the binding interactions of compounds II, 6a and 6n with FtsZ. Compounds exhibiting good in vitro potency in the MTB MIC assay were further evaluated for toxicity using the HEK cell line.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Scheme 3
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. World Health Organization (2016) Global tuberculosis report. Technical report from the World Health Organization, Geneva, Switzerland. http://www.who.int/mediacentre/factsheets/fs104/en/. Accessed 4 Mar 2017

  2. Kaufmann SHE, Rubin E (2008) Handbook of tuberculosis: clinics, diagnostics, therapy and epidemiology. Wiley, Hoboken

    Book  Google Scholar 

  3. Espinal MA (2003) The global situation of MDR-TB. Tuberculosis 83:44–51. doi:10.1016/S1472-9792(02)00058-6

    Article  PubMed  Google Scholar 

  4. Lienhardt C, Raviglione M, Spigelman M, Hafner R, Jaramillo E, Hoelscher M, Zumla A, Gheuens J (2012) New drugs for the treatment of tuberculosis: needs, challenges, promise, and prospects for the future. J Infect Dis 205:S241–S249. doi:10.1093/infdis/jis034

    Article  PubMed  Google Scholar 

  5. Bemer-Melchior P, Bryskier A, Drugeon HB (2000) Comparison of the in vitro activities of rifapentine and rifampicin against Mycobacterium tuberculosis complex. J Antimicrob Chemother 46:571–576. doi:10.1093/jac/46.4.571

    Article  CAS  PubMed  Google Scholar 

  6. Jain A, Mondal R (2008) Extensively drug-resistant tuberculosis: current challenges and threats. FEMS Immunol Med Microbiol 53:145–150. doi:10.1111/j.1574-695X.2008.00400.x

    Article  CAS  PubMed  Google Scholar 

  7. Fauci AS (2008) Multidrug-resistant and extensively drug-resistant tuberculosis: the national institute of allergy and infectious diseases research agenda and recommendations for priority research. J Infect Dis 197:1493–1498. doi:10.1086/587904

    Article  PubMed  Google Scholar 

  8. Barry CE, \(3{{\rm rd}}\), Blanchard JS, (2010) The chemical biology of new drugs in the development for tuberculosis. Curr Opin Chem Biol 14:456–466. doi:10.1016/j.cbpa.2010.04.008

  9. Long R (2000) Drug-resistant tuberculosis. Can Med Assoc J 163:425–428

    CAS  Google Scholar 

  10. Lynch JB (2013) Multidrug-resistant tuberculosis. Med Clin N Am 97:553–579. doi:10.1016/j.mcna.2013.03.012

    Article  PubMed  Google Scholar 

  11. Kale MG, Raichurkar A, Waterson D, McKinney D, Manjunatha M, Kranthi U, Koushik K, Jena LK, Shinde V, Rudrapatna SJ (2013) Thiazolopyridine ureas as novel antitubercular agents acting through inhibition of DNA gyrase B. J Med Chem 56:8834–8848. doi:10.1021/jm401268f

    Article  CAS  PubMed  Google Scholar 

  12. Scorpio A, Zhang Y (1996) Mutations in pncA, a gene encoding pyrazinamidase/ nicotinamidase, cause resistance to the antituberculous drug pyrazinamide in tubercle bacillus. Nat Med 2:662–667. doi:10.1038/nm0696-662

    Article  CAS  PubMed  Google Scholar 

  13. Sharma K, Chopra P, Singh Y (2004) Recent advances towards identification of new drug targets for Mycobacterium tuberculosis. Expert Opin Ther Targets 8:79–93. doi:10.1517/14728222.8.2.79

    Article  CAS  PubMed  Google Scholar 

  14. Virsdoia V, Shaikh MS, Manvar A, Desai B, Parecha A, Loriya R, Dholariya K, Patel G, Vora V, Upadhyay K, Denish K, Shah A, Coutinho EC (2010) Screening for in vitro antimycobacterial activity and three-dimensional quantitative structure-activity relationship (3D-QSAR) study of 4-(arylamino)coumarin derivatives. Chem Biol Drug Des 76:412–424. doi:10.1111/j.1747-0285.2010.00997.x

    Article  CAS  PubMed  Google Scholar 

  15. Manvar A, Bavishi A, Radadiya A, Patel J, Vora V, Dodia N, Rawal K, Shah A (2011) Diversity oriented design of various hydrazides and their in vitro evaluation against Mycobacterium tuberculosis H37Rv strains. Bioorg Med Chem Lett 21:4728–4731. doi:10.1016/j.bmcl.2011.06.074

    Article  CAS  PubMed  Google Scholar 

  16. Tietze LF, Bell HP, Chandrasekhar S (2003) Natural product hybrids as new leads for drug discovery. Angew Chem Int Ed 42:3996–4028. doi:10.1002/anie.200200553

    Article  CAS  Google Scholar 

  17. Deady LW, Desneves J, Kaye AJ, Finlay GJ, Baguley BC, Denny WA (2008) Synthesis and antitumor activity of some indeno[\(1,2-b\)]quinoline-based bis carboxamides. Bioorg Med Chem 8:977–984. doi:10.1016/S0968-0896(00)00039-0

    Article  Google Scholar 

  18. Feng S, Wang Z, He X, Zheng S, Xia Y, Jiang H, Tang X, Bai D (2005) Bis-huperzine B:? highly potent and selective acetylcholinesterase inhibitors. J Med Chem 48:655–657. doi:10.1021/jm0496178

    Article  CAS  PubMed  Google Scholar 

  19. Feng L, Maddox MM, Zahidul-Alam Md, Tsutsumi LS, Narula G, Bruhn DF, Wu X, Sandhaus S, Lee RB, Simmons CJ, Dinh YCT, Hurdle JG, Lee RE, Sun D (2014) Synthesis, structure-activity relationship studies, and antibacterial evaluation of 4-chromanones and chalcones, as well as olympicin A and derivatives. J Med Chem 57:8398–8420. doi:10.1021/jm500853v

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mujahid M, Gonnade RG, Yogeeswari P, Sriram D, Muthukrishnan M (2013) Synthesis and antitubercular activity of amino alcohol fused spirochromone conjugates. Bioorg Med Chem Lett 23:1416–1419. doi:10.1016/j.bmcl.2012.12.073

    Article  CAS  PubMed  Google Scholar 

  21. Wu MC, Peng CF, Chen IH, Tsai IL (2011) Antitubercular chromones and flavonoids from pisonia aculeata. J Nat Prod 74:976–982. doi:10.1021/np1008575

    Article  CAS  PubMed  Google Scholar 

  22. Kabbe HJ (1982) Synthesis and reactions of 4-chromanones. Angew Chem Int Ed Engl 21:247–256. doi:10.1002/anie.198202471

    Article  Google Scholar 

  23. Kabbe HJ (1978) Eine einfache synthese von 4-chromanonen. Synthesis 886–887: doi:10.1055/s-1978-24924

  24. Dolle RE, Bourdonnec BL, Chu GH (2009) Spirocyclic heterocyclic derivatives and methods of their use. Patent US 7598261

  25. Dillard LW, Yuan J, Jia L, Zheng Y (2010) Inhibitors of beta-secretase. PCT Int, Appl, p 2010021680

  26. Melak T, Sunita G (2015) Maximum flow approach to prioritize potential drug targets of Mycobacterium tuberculosis H37Rv from protein-protein interaction network. Clin Trans Med 4:1–10. doi:10.1186/s40169-015-0061-6

    Article  Google Scholar 

  27. Erickson HP (1995) FtsZ, a prokaryotic homolog of tubulin. Cell 80:367–370. doi:10.1016/0092-8674(95)90486-7

    Article  CAS  PubMed  Google Scholar 

  28. Addinall SG, Holland B (2002) The tubulin ancester, FtsZ, draughtsman, designer and driving force for bacterial cytokinesis. J Mol Biol 318:219–236. doi:10.1016/S0022-2836(02)00024-4

    Article  CAS  PubMed  Google Scholar 

  29. Erickson HP (1997) FtsZ, a tubulin homologue in prokaryote cell division. Trends Cell Biol 7:362–367. doi:10.1016/S0962-8924(97)01108-2

    Article  CAS  PubMed  Google Scholar 

  30. Margolin W (2000) Themes and variations in prokaryotic cell division. FEMS Microbiol Rev 24:531–548. doi:10.1111/j.1574-6976.2000.tb00554.x

    Article  CAS  PubMed  Google Scholar 

  31. Bi E, Lutkenhaus J (1991) FtsZ ring structure associated with division in Escherichia coli. Nature 354:161–164. doi:10.1038/354161a0

    Article  CAS  PubMed  Google Scholar 

  32. Oliva MA, Cordell SC, Lowe J (2004) Structural insights into FtsZ protofilament formation. Nat Struct Mol Biol 11:1243–1250. doi:10.1038/nsmb855

    Article  CAS  PubMed  Google Scholar 

  33. Adams DW, Errington J (2009) Bacterial cell division: assembly, maintenance and disassembly of the Z ring. Nat Rev Microbiol 7:642–653. doi:10.1038/nrmicro2198

    Article  CAS  PubMed  Google Scholar 

  34. Margolin W (2005) FtsZ and the division of prokaryotic cells and organelles. Nat Rev Mol Cell Biol 6:862–871. doi:10.1038/nrm1745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Payne DJ, Gwynn MN, Holmes DJ, Pompliano DL (2007) Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Discov 6:29–40. doi:10.1038/nrd2201

    Article  CAS  PubMed  Google Scholar 

  36. Lock RL, Harry EJ (2008) Cell-division inhibitors: new insights for future antibiotics. Nat Rev Drug Discov 7:324–338. doi:10.1038/nrd2510

    Article  CAS  PubMed  Google Scholar 

  37. Gerlier D, Thomasset N (1986) Use of MTT colorimetric assay to measure cell activation. Immunol Methods 94:57–63. doi:10.1016/0022-1759(86)90215-2

    Article  CAS  Google Scholar 

  38. Schrodinger Suite (2011) Induced fit docking protocol, Glide, version 5.6, LLC, New York. https://www.schrodinger.com/newsletters/extra-precision-xp-docking-and-scoring-overview

  39. Li Y, Hsin J, Zhao L, Cheng Y, Shang W, Huang KC, Wang HW, Ye S (2013) FtsZ protofilaments use a hinge-opening mechanism for constrictive force generation. Science 341:392–395. doi:10.1126/science.1239248

    Article  CAS  PubMed  Google Scholar 

  40. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank The Head, Department of Chemistry, Osmania University, Hyderabad, for providing laboratory facilities. A.V.K. thanks CSIR for Ph.D. fellowship. B.S.K. thanks Schrödinger Suite 2011, Glide5.6 software, LLC. We thank CFRD analytical team for providing spectral analysis facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Dongamanti.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 7811 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dongamanti, A., Aamate, V.K., Devulapally, M.G. et al. Bis-spirochromanones as potent inhibitors of Mycobacterium tuberculosis: synthesis and biological evaluation. Mol Divers 21, 999–1010 (2017). https://doi.org/10.1007/s11030-017-9779-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-017-9779-y

Keywords

Navigation