Skip to main content
Log in

Synthesis of isoflavones by room-temperature nickel-catalyzed cross-couplings of 3-iodo(bromo)chromones with arylzincs

  • Full-Length Paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

A new concise, facile method for synthesis of isoflavones was accomplished in moderate to good yields for 3-iodochromones or 3-bromochromones and arylzinc bromides via Negishi cross-coupling reaction catalyzed by \(\hbox {NiCl}_{2}/\hbox {PPh}_{3}\) or \(\hbox {NiCl}_{2}(\hbox {PPh}_{3})_{2}\) at room temperature. The Isoflavone core was synthesized in four steps in good yield, starting from commercially available 2-hydroxyacetophenone and aromatic bromide. Three steps of the procedure were carried out at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2

Similar content being viewed by others

References

  1. Blank VC, Poli C, Marder M, Roguin LP (2004) Antiproliferative activity of various flavonoids and related compounds: additive effect of interferon-\(\alpha \)2b. Med Chem Lett 14:133–136. doi: 10.1016/j.bmcl.2003.10.029

    Article  CAS  Google Scholar 

  2. Li XC, Joshi AS, El-Sohly HN, Khan SI, Jacob MR, Zhang ZZ, Khan IA, Ferreira D, Walker LA, Broedel SE, Raulli RE, Cihlar RL (2002) Fatty acid synthase inhibitors from plants: isolation, structure elucidation, and SAR studies. J Nat Prod 65:1909–1914. doi:10.1021/np020289t

    Article  CAS  PubMed  Google Scholar 

  3. Damrongkiet A, Jisnuson S, Prasat K, Daraporn P, Morakot T, Yodhathai T (2002) Antiviral isoflavonoid sulfate and steroidal glycosides from the fruits of Solanum torvum. Phytochemistry 59:459–463. doi:10.1016/S0031-9422(01)00417-4

    Article  Google Scholar 

  4. Laupattarakasem P, Houghton PJ, Robin J, Hoult S (2004) Anti-inflammatory isoflavonoids from the stems of Derris scandens. Planta Med 70:496–501. doi:10.1055/s-2004-827147

    Article  CAS  PubMed  Google Scholar 

  5. Kang KA, Zhang R, Piao MJ, Ko DO, Wang ZH, Kim BJ, Park JW, Kim HS, Kim DH, Hyun JW (2008) Protective effect of irisolidone, a metabolite of kakkalide, against hydrogen peroxide induced cell damage via antioxidant effect. Bioorg Med Chem 16:1133–1141. doi:10.1016/j.bmc.2007.10.085

    Article  CAS  PubMed  Google Scholar 

  6. Qin CX, Chen XQ, Hughes RA, Williams SJ, Woodman OL (2007) Understanding the cardioprotective effects of flavonols: discovery of relaxant flavonols without antioxidant activity. J Med Chem 51:1874–1884. doi:10.1021/jm070352h

    Article  Google Scholar 

  7. Middleton E, Kandaswami C, Theoharides TC (2000) The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer. Pharmacol Rev 52:673–751

    CAS  PubMed  Google Scholar 

  8. Birt DF, Hendrich S, Wang W (2001) Dietary agents in cancer prevention: flavonoids and isoflavonoids. Pharmacol Ther 90:157–177. doi:10.1016/S0163-7258(01)00137-1

    Article  CAS  PubMed  Google Scholar 

  9. Wong E (1975) The flavanoids. Chapman and Hall, London

  10. Balasubramanian S, Nair MG (2000) An efficient “One Pot” synthesis of isoflavones. Synth Commun 30:469–484. doi:10.1080/00397910008087343

    Google Scholar 

  11. Zhang Q, Botting NP (2004) The synthesis of [2,3,4-\(^{13}\text{ C }_{3}\)]glycitein. Tetrahedron 60:12211–12216. doi: 10.1016/j.tet.2004.10.028

    Article  CAS  Google Scholar 

  12. Prakash O, Pahuja S, Goyal S, Sawhney SN, Moriarty RM (1990) 1,2-Aryl shift in the hypervalent iodine oxidation of flavanones: a new useful synthesis of isoflavones. Synlett 1990:337–338. doi:10.1055/s-1990-21084

    Article  Google Scholar 

  13. Marais JPJ, Ferreira D, Slade D (2005) Stereoselective synthesis of monomeric flavonoids. Phytochemistry 66:2145–2176. doi:10.1016/j.phytochem.2005.03.006

    Article  CAS  PubMed  Google Scholar 

  14. Paguette LA, Stucki H (1966) A new general approach to the synthesis of oxygen-containing heterocycles by virtue of hydroxyl neighboring group participation. The condensation of enamines with salicylaldehydes. J Org Chem 31:1232–1235. doi:10.1021/jo01342a060

    Article  Google Scholar 

  15. Antonio GM, Jose OB, del Maria RCH, de Alvaro FC (2001) Reactions of vinyl and aryl triflates with hypervalent tin reagents. Organometallics 20:1020–1023. doi:10.1021/om000957a

    Article  Google Scholar 

  16. Yokoe I, Sugita Y, Shirataki Y (1989) Facile synthesis of isoflavones by the cross-coupling reaction of 3-iodochromone with arylboronic acids. Chem Pharm Bull 37:529–530. doi:10.1248/cpb.37.529

    Article  CAS  Google Scholar 

  17. Vasselin DA, Westwell AD, Matthews CS, Bradshaw TD, Stevens MFG (2006) Structural studies on bioactive compounds. 40.\(^{1}\) Synthesis and biological properties of fluoro-, methoxyl-, and amino-substituted 3-phenyl-4H-1-benzopyran-4-ones and a comparison of their antitumor activities with the activities of related 2-phenylbenzothiazoles. J Med Chem 49:3973–3981. doi: 10.1021/jm060359j

    Article  CAS  PubMed  Google Scholar 

  18. Rao MLN, Venkatesh V, Jadhav DN (2009) Pd-catalyzed efficient cross-couplings of 3-iodochromones with triaryl-bismuths as substoichiometric multicoupling organometallic nucleophiles. Synlett 16:2597–2600. doi:10.1055/s-0029-1217959

    Article  Google Scholar 

  19. Zhang ZT, Liang B, Xue D, Liu QG, Li WW, Yang JL (2011) From faming zhuanli shenqing, 102241657. Abstr CA 155:656695

  20. Klier L, Bresser T, Nigst TA, Karaghiosoff K, Knochel P (2012) Lewis acid-triggered selective zincation of chromones, quinolones, and thiochromones: application to the preparation of natural flavones and isoavones. J Am Chem Soc 134:13584–13587. doi:10.1021/ja306178q

    Google Scholar 

  21. Negishi E-i, King AO, Okukado N (1977) Selective carbon-carbon bond formation via transition metal catalysis. 3.\(^{1}\) A highly selective synthesis of unsymmetrical biaryls and diarylmethanes by the nickel- or palladium- catalyzed reaction of aryl- and benzylzinc derivatives with aryl halides. J Org Chem 42:1821–1823. doi: 10.1021/jo00430a041

    Article  CAS  Google Scholar 

  22. Gammill RB (1979) A new and efficient synthesis of 3-halogenated 4H–1-benzopyran-4-ones. Synthesis 11:901–903. doi:10.1055/s-1979-28869

    Article  Google Scholar 

  23. Kazmierski I, Gosmini C, Paris JM, Périchon J (2003) New progress in the cobalt-catalysed synthesis of aromatic organozinc compounds by reduction of aromatic halides by zinc dust. Tetrahedron Lett 44:6417–6420. doi:10.1016/S0040-4039(03)01595-8

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (No: 21372150), the Fundamental Research Funds for the Central Universities (No: GK261001095), and the Science and Innovation Funds of Graduate Programs of Shaanxi Normal University (No: 2009CXS013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zunting Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Qiao, J., Wang, D. et al. Synthesis of isoflavones by room-temperature nickel-catalyzed cross-couplings of 3-iodo(bromo)chromones with arylzincs. Mol Divers 18, 245–251 (2014). https://doi.org/10.1007/s11030-013-9495-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-013-9495-1

Keywords

Navigation