Skip to main content
Log in

First-Ply Failure Behavior of Laminated Composite Skew Plates of Various Edge Conditions

  • Published:
Mechanics of Composite Materials Aims and scope

Applications of skew plates in the practical civil engineering are well-established. A look into the papers about the failure of laminated composite structural elements revealed that composite skew plates have not been studied for failure in detail. The first-ply failure load and frequency reduction due to such a failure are reported considering practical parametric variations of composite skew plates. Different well-established failure criteria, including the most recent Puck failure criterion, are used to investigate the first-ply failure response by the finite-element method. The results obtained are postprocessed to formulate specific recommendations regarding the relative behavior of different skew plate combinations in terms of the first-ply failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. L. S. D. Morley, “Bending of clamped rectilinear plates,” J. Mech. Appl. Math., XVII, No. 3, 293-317 (1963).

    Article  Google Scholar 

  2. J. B. Kennedy, “On the bending of clamped skewed plates under uniform pressure,” J. Royal Aero. Soc., 69, No. 653, 352-355 (1965).

    Article  Google Scholar 

  3. K. T. Sundara, R. Iyenger, and R. S. Srinivasan, “Clamped skewed plates under uniform normal loading,” J. Royal Aero. Soc., 71, No. 674, 139-140 (1966).

    Article  Google Scholar 

  4. C. V. Srinivasa, Y. J. Suresh, and W. P. P. Kumar, “Experimental and finite element studies on free vibration of skew plates,” Int. J. Adv. Struct. Eng., 6, No. 48, 1-11 (2014).

    Google Scholar 

  5. T. Rajaiah and A. K. Rao, “Exact analysis of simply supported rhombic plates under uniform pressure,” Math. Proc. Cambr. Phil. Soc., 76, No. 1, 381-388 (1974).

    Article  Google Scholar 

  6. M. Mukhopadhyay, “Finite strip method of analysis of clamped skewed plate in bending,” Proc. Inst. Civil Eng., 61, No. 2, 189-195 (1976).

    Google Scholar 

  7. C. M. Wang, S. Kitipornchai, Y. Xiang, and K. M. Liew, “Stability of skew Mindlin plates under isotropic inplane pressure,” J. Eng. Mech., 119, No. 2, 393-401 (1993).

    Article  Google Scholar 

  8. K. M. Liew and J. B. Han, “Bending analysis of simply supported shear deformable skew plates,” J. Eng. Mech., 123, No. 3, 214-221 (1997).

    Article  Google Scholar 

  9. T. Muhammad and A. V. Singh, “A p-type solution for the bending of rectangular, circular, elliptic and skew plates,” Int. J. Solids Struct., 41, No. 15, 3977-3997 (2004).

    Article  Google Scholar 

  10. D. Das, P. Sahoo, and K. Saha, “Large deflection analysis of skew plates under uniformly distributed load for mixed boundary conditions,” Int. J. Eng. Sci. Tech., 2, No. 4,100-112 (2010).

    Article  Google Scholar 

  11. P. J. Chun, G. Fu, and Y. M. Lim, “Analytical solutions for skewed thick plates subjected to transverse loading,” Struct. Eng. Mech., 38, No. 5, 549-571 (2011).

    Article  Google Scholar 

  12. R. L. Wankhade, “Geometric nonlinear analysis of skew plates using finite element method,” Int. J. Adv. Eng. Tech., 2, No. 2, 154-163 (2011).

    Google Scholar 

  13. A. K. Upadhyay and K. K. Shukla, “Large deformation flexural behavior of laminated composite skew plates: An analytical approach,” Compos. Struct., 94, No. 12, 3722-3735 (2012).

    Article  Google Scholar 

  14. B. Singh and S. Chakraverty, “Flexural vibration of skew plates using boundary characteristic orthogonal polynomials in two variables,” J. Sound Vib., 173, No. 2, 157-178 (1994).

    Article  Google Scholar 

  15. M. Barik and M. Mukhopadhyay, “Free flexural vibration analysis of arbitrary plates with arbitrary stiffeners,” J. Vib. Cont., 5, No. 5, 667-683 (1997).

    Article  Google Scholar 

  16. M. Barik and M. Mukhopadhyay, “Finite element free flexural vibration analysis of arbitrary plates,” Fin. Elem. Anal. Des., 29, No. 2, 137-151 (1998).

    Article  Google Scholar 

  17. M. Gurses, O. Civalek, A. K. Korkmaz, and H. Ersoy, “Free vibration analysis of symmetric laminated skew plates by discrete singular convolution technique based on first-order shear deformation theory,” Int. J. Num. Meth. Eng., 79, No. 3, 290-313 (2009).

    Article  Google Scholar 

  18. I. Park, U. Lee, and D. Park, “Transverse vibration of the thin plates: Frequency-domain spectral element modeling and analysis,” Math. Prob. Eng., 1-15 (2015).

  19. S. Wang, “Free vibration analysis of skew fiber-reinforced composite laminates based on first order shear deformation plate theory,” Comput. Struct., 63, No. 3, 525-538 (1997).

    Article  Google Scholar 

  20. M. K. Singha and M. Ganapathy, “Large amplitude free flexural vibrations of laminated composite skew plates,” Int. J. Nonlinear. Mech., 39, No. 10, 1709-1720 (2004).

    Article  Google Scholar 

  21. P. Malekzadeh, “A differential quadrature nonlinear free vibration analysis of laminated composite skew thin plates,” Thin Walled Struct., 45, No. 2, 237-249 (2007).

    Article  Google Scholar 

  22. M. K. Singha and R. Daripa, “Nonlinear vibration of symmetrically laminated composite skew plates by finite element method,” Int. J. Nonlinear Mech., 42, No. 9, 1144-1152 (2007).

    Article  Google Scholar 

  23. A. Kumar and A. Chakrabarti, “Failure analysis of laminated composite skew laminates,” Proc. Eng., 173, No. 2017, 1560-1566 (2017).

    Article  Google Scholar 

  24. G. J. Turvey, “An initial flexural failure analysis of symmetrically laminated cross-ply rectangular plates,” Int. J. Solids Struct., 16, No. 5, 451-463(1979).

    Article  Google Scholar 

  25. J. N. Reddy and A. K. Pandey, “A first ply failure analysis of composite laminates,” Compos. Struct., 25, No. 3, 371-393 (1987).

    Article  Google Scholar 

  26. T. Y. Kam and T. B. Jan, “First ply failure analysis of laminated composite plates based on the layerwise linear displacement theory,” Compos. Struct., 32, Nos. 1-4, 583-591 (1995).

    Article  Google Scholar 

  27. J. Echaabi, F. Trochu, X. T. Pham, and M. Ouellet, “Theoretical and experimental investigation of failure and damage progression of graphite epoxy composites in flexural bending test,” J. Reinf. Plast. Compos., 15, No. 7, 740-755 (1996).

    Article  CAS  Google Scholar 

  28. B. G. Prusty, S. K. Satsangi, and C. Ray, “First ply failure analysis of laminated panels under transverse loading,” J. Reinf. Plast. Compos., 20, No. 8, 671-684 (2001).

    Article  CAS  Google Scholar 

  29. O. O. Ochoa and J. J. Engblom, “Analysis of progressive failure in composite,” Compos. Sci. Tech., 28, No. 2, 87-102 (1987).

    Article  CAS  Google Scholar 

  30. S. Tolson and N. Zabaras, “Finite element analysis of progressive failure in laminated composite plates,” Comput. Struct., 38, No. 3, 361-376 (1991).

    Article  Google Scholar 

  31. P. Pal and C. Ray, “Progressive failure analysis of laminated composite plate by finite element method,” J. Reinf. Plast. Compos., 21, No. 16, 1505-1513 (2002).

    Article  CAS  Google Scholar 

  32. B. Chattopadhyay, P. K. Sinha, and M. Mukhopadhyay, “Geometric nonlinear analysis of composite stiffened plate using finite element,” Compos. Struct., 31, No. 2, 107-118 (1995).

    Article  Google Scholar 

  33. T. Y. Kam, H. F. Sher, T. N. Chao, and R. R. Chang, “Predictions of deflection and first ply failure load of thin laminated composite plates via the finite element approach,” Int. J. Solids Struct., 33, No. 3, 375-398 (1996).

    Article  Google Scholar 

  34. G. S. Padhi, R. A. Shenoi, S. S. J. Moy, and G. L. Hawkins, “Progressive failure and ultimate collapse of laminated composite plates in bending,” Compos. Struct., 40, No. 3, 277-291 (1998).

    Google Scholar 

  35. Y. S. N. Reddy and J. N. Reddy, “Linear and nonlinear failure analysis of composite laminates with transverse shear,” Compos. Sci. Technol., 44, No. 3, 227-255 (1992).

    Article  Google Scholar 

  36. T. Y. Kam and F. M. Lai, “Experimental and theoretical predictions of first ply failure strength of laminated composite plates,” Int. J. Solids Struct., 36, No. 16, 2379-2395 (1999).

    Article  Google Scholar 

  37. Y. S. N. Reddy, C. M. Dakshina Moorthy, and J. N. Reddy, “Nonlinear progressive failure analysis of laminated composite plates,” Int. J. Nonlinear Mech., 30, No. 5, 629-649 (1995).

    Article  Google Scholar 

  38. H. S. Das and D. Chakravorty, “Design aids and selection guidelines for composite conoidal shell roofs - A finite element application,” J. Reinf. Plast. Compos., 26, No. 17, 1793-1819 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Chatterjee.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 57, No. 5, pp. 989-1012, September-October, 2021. Russian DOI: 10.22364/mkm.57.5.13.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatterjee, D., Ghosh, A. & Chakravorty, D. First-Ply Failure Behavior of Laminated Composite Skew Plates of Various Edge Conditions. Mech Compos Mater 57, 699–716 (2021). https://doi.org/10.1007/s11029-021-09989-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-021-09989-4

Keywords

Navigation