Skip to main content

Advertisement

Log in

Orientation of Anisotropic Carbon Particles in the Matrix of Reinforced Plastics by an AC Electric Field

  • Published:
Mechanics of Composite Materials Aims and scope

In order to increase the shear strength of glass-fibers-reinforced plastics, a method has been developed for orientation of conductive carbon nanoparticles by an electric field applied transversely to the reinforcing fibers. Results of our research confirm the efficiency of the method offered — the shear strength the composites increased significantly, up to 35%, without reducing their other characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. M. L. Kerber, V. M. Vinogradov, G. S. Golovkin, et al., Polymer Composite Materials: Structure, Properties, Technology [in Russian], SPb, Professia (2008).

  2. N. N. Trofimov, M. Z. Kanovich, E. M. Kartashov, et al. [in Russian], Physics of Composite Materials, M., Mir (2005).

  3. V. I. Solodilov, R. A. Korohin, Yu. A. Gorbatkina, and A. M. Kuperman, “Comparison of fracture energies of epoxypolysulfone matrices and unidirectional composites on them,” Mech. Compos. Mater., 51, No. 2, 177-190 (2015).

    Article  CAS  Google Scholar 

  4. V. I. Solodilov, Yu. A. Gorbatkina, A. M. Kuperman, “The effect of an active diluent on the properties of epoxy resin and unidirectional carbon-fiber-reinforced plastics,” Mech. Compos. Mater., 39, No. 6, 493-502 (2003).

    Article  CAS  Google Scholar 

  5. V. I. Solodilov, I. V. Bessonov, A. V. Kireinov, N. Yu. Taraskin, and A. M. Kuperman, “Properties of glass-fibers plastic on the basis of an epoxy binder modified by a furfurolacetone resind and polysulfone,” Kompozity i Nanostruktury, 8, No. 2, 77-87 (2016).

    CAS  Google Scholar 

  6. R. A. Korokhin, V. I. Solodilov, Yu. A. Gorbatkina, and A. V. Shapagin, “Rheological and physicomechanical properties epoxy-polyetherimide compositions,” Mech. Compos. Mater., 51, No. 3, 313-320 (2015).

    Article  CAS  Google Scholar 

  7. Yan Zhang, Fenghua Chen, Wei Liu, Songmei Zhao, Xianggui Liu, Xia Dong, and C. Han Charles, “Rheological behavior of the epoxy/thermoplastic blends during the reaction induced phase separation,” Polymer, 55, Iss. 19, 4983-4989 (2014).

    Article  CAS  Google Scholar 

  8. V. I. Solodilov and Yu. A. Gorbatkina, “Properties of unidirectional GFRP based on an epoxy resin modified with polysulfone or an epoxyurethane oligomer,” Mech. Compos. Mater., 42, No. 6, 513-526 (2006).

    Article  CAS  Google Scholar 

  9. V. I. Solodilov and Yu. A. Gorbatkina, “Properties of unidirectional GFRP on the basis of an epoxy resin modified by polysulfone or an epoxyurethane oligomer,” Mekh. Kompoz. Mater. Konstr., 14, No. 2, 224-235 (2008).

    CAS  Google Scholar 

  10. R. A. Korokhin, V. I. Solodilov, and Yu. A. Gorbatkina, “Properties of GFRP on the basis of an aerosol-filled resin,” Mekh. Kompoz. Mater. Konstr., 15, No. 3, 437-447 (2009).

    Google Scholar 

  11. R. A. Korokhin, V. I. Solodilov, Yu. A. Gorbatkina, and A. V. Otegov, “Physicomechanical properties of dispersedly epoxies,” Plast. Massy, No. 4, 37-41 (2013).

  12. V. A. Bol’shakov, V. I. Solodilov, R. A. Korokhin, S. V. Kondrashov, Yu. I. Merkulov, and T. P. Dyachkova, “Investigation of crack resistance of polymer composite materials made by the infusion method with the use of various concentrates on the basis of modified CNTs,” Tr. VIAM, 55, No. 7, 9 (2017).

    Article  Google Scholar 

  13. R. A. Korokhin, V. I. Solodilov, Yu. A. Gorbatkina, and A. V. Otegov, “Effect of ultrasonic processing of nanomodified binders on the fracture toughness hardened compositions,” Mekh. Kompoz. Mater. Konstr., 17, No. 4, 527-538 (2011).

    CAS  Google Scholar 

  14. R. A. Korokhin, V. I. Solodilov, Yu. A. Gorbatkina, and A. M. Kuperman, “ The use of carbon nanotubes as modifiers of epoxypolysulfone matrices of wound organoplastics,” Mech. Compos. Mater., 49, No. 1, 77-86 (2013).

    Article  Google Scholar 

  15. C. A. Martina, J. K. W. Sandler, A. H. Windle, M.-K. Schwarz, W. Bauhofer, K. Schulte, and M. S. P. Shaffer, “Electric field-induced aligned multi-wall carbon nanotube networks in epoxy composites,” Polymer, 46, 877-886 (2005).

    Article  Google Scholar 

  16. Cheol Park, John Wilkinson, Sumanth Banda, Zoubeida Ounaies, Kristopher E. Wise, Godfrey Sauti, Peter T. Lillehei, and Joycelyn S. Harrison, “Aligned single-wall carbon nanotube polymer composites using an electric field,” J. Polym. Sci., Part B, Polym. Phys., 44, 1751-1762 (2006).

    Article  CAS  Google Scholar 

  17. Kunitoshi Yamamoto, Seiji Akita, and Yoshikazu Nakayama, “Orientation and purification of carbon nanotubes using ac electrophoresis,” J. Phys. D: Appl. Phys., 31, L34.-L36 (1998).

    Article  CAS  Google Scholar 

  18. E. F. Sheka, I. Natkaniec, V. Mel’nikov, and K. Druzbicki, “Neutron scattering from graphene oxide paper and thermally exfoliated reduced graphene oxide,” Nanosystems: Physics, Chemistry, Mathematics, 6, No. 3, 378-393 (2015).

    CAS  Google Scholar 

  19. Z. Z. Latypov, “Anisotropic strengthening the properties of nanocomposites by the methods of electromagnetic orientation nanoparticles in the matrix,” Nauch. Priborostr., 21, No. 1, 50-52 (2011).

    CAS  Google Scholar 

  20. D. A. Bulgakov, A. Ya. Gorenberg, and A. M. Kuperman, Patent on invention № 2468918, A composite reinforced material and a way of its production.

  21. Composite Materials [in Russian], eds V. V. Vasilyev and Yu. M. Tarnopolskii, M., Mashinostroenie (1990).

  22. A. V. Antonov, E. S. Zelenskii,y A. M. Kuperman, O. V. Lebedeva, and A. V. Rybin, “Behavior of reinforced plastics based on a polysulfone matrix under impact loading,” Mech. Compos. Mater., 34, No. 1, 12-19 (1998).

    Article  CAS  Google Scholar 

  23. V. I. Solodilov, S. L. Bazhenov, Yu. A. Gorbatkina, and A. M. Kuperman, “Determination of the interlaminar fracture toughness of glass-fiber-reinforced plastics on ring segments,” Mech. Compos. Mater., 39, No. 5, 407-414 (2003).

    Article  Google Scholar 

  24. E. N. Kablov, S. V. Kondrashov, G. Yu. Jurkov, “Prospects of using carbon-containing nanoparticles in binders for polymer composite materials,” Ros. Nanotekhnol., 8, No. 3-4, 28-46 (2013).

    Google Scholar 

Download references

Acknowledgement

This work was performed within the framework of Theme No. 45.11 of the State task FANO of Russia (No. 0082-2014-0009, registration No. АААА-А17-117040610309-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Bulgakov.

Additional information

Translated from Mekhanika Kompozitnykh Materialov, Vol. 54, No. 5, pp. 941-952, September-October, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulgakov, D.A., Gorenberg, A.Y. & Kuperman, A.M. Orientation of Anisotropic Carbon Particles in the Matrix of Reinforced Plastics by an AC Electric Field. Mech Compos Mater 54, 647–654 (2018). https://doi.org/10.1007/s11029-018-9772-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-018-9772-2

Keywords

Navigation