Skip to main content
Log in

Optimization of the Structure of a Ceramic-Aluminum Alloy Composite Subjected to the Impact of Hard Steel Projectiles

  • Published:
Mechanics of Composite Materials Aims and scope

The optimization process for a composite panel with an Al2O3-AA2024 percolation phase subjected to a perpendicular impact of a 7.62 × 54R B32 Armor Piercing projectile is described. It is found that metal-matrix composite/ceramic-matrix composite structures have a lower ballistic resistance than structures in which a hard layer supported by a plastic one. Optimization revealed that the best composite panel with an Al2O3-AA2024 percolation phase could be obtained when the probability distribution of individual materials was described by a highly nonlinear function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. B. A. Gama, T. A. Bogetti, K. F. Bruce, C. J. Yu, T. D. Claar, H. H. Eifert, and J, W. Gillespie, “Aluminum foam integral armor: a new dimension in armor design,” Composite Structures, 52, No. 3-4, 381-395 (2001).

  2. J. Wang, N. Zhou, and C. Peng, “Influence of different combinations of explosively welded plates with the same areal density on their antipenetration performance,” Mech. Compos. Mater., 50, No. 5, 623-632 (2014).

    Article  Google Scholar 

  3. V. N. Aptukov, V. L. Belousov, and M. A. Kanibolotskii, “Optimization of the structure of layered slab with the penetration of a rigid striker,” Mech. Compos. Mater., No. 2, 252-257 (1986).

  4. A. Muc, “Optimization of multilayered composite structures with randomly distributed mechanical properties,” Mech. Compos. Mater., 41, No. 6, 505-510 (2005).

    Article  Google Scholar 

  5. A. L. Florence, “Interaction of projectiles and composite armor. Part 2. AMMRC-CR-69-15”, Stanford Research Institute, Menlo Park, California. (1969).

  6. J. G. Hetherington, “Optimization of two-component composite armours,” Int. J. Impact Eng. 12, No. 3, 409-414 (1992).

    Article  Google Scholar 

  7. 7 B. Wang and G. Lu, “On the optimization of two-component plates against ballistic impact,” J. Mater. Proc. Technol., 57, No. 1-2, 141-145 (1996).

    Article  Google Scholar 

  8. J. Shi, D. Grow, “Effect of double constraints on the optimization of two-component armor systems,” Composite Structures, 79, No. 3, 445-453 (2007).

    Article  Google Scholar 

  9. G. Ben-Dor, A. Dubinsky, and T. Elperin, “Improved Florence model and optimization of two-component armor against single impact or two impacts,” Composite Structures, 88, No. 1, 158-165 (2009).

    Article  Google Scholar 

  10. A. A. Growenwold and J. A. Snyman, “Global optimization using dynamic search trajectories,” J. of Global Optimization, 24, No. 1, 51-60 (2002).

    Article  Google Scholar 

  11. H. E. Romeijn and R. L. Smith. “Simulated annealing and adaptive search in global optimization,” Probability in the Eng. and Informational Sci., 8, No. 4, 571-590 (1994).

    Article  Google Scholar 

  12. J. A. Snyman, “The LFOPC leap-frog algorithm for constrained optimization,” Int. J. Computers and Mathematics with Applications, 40, No. 8-9, 1085-1096 (2000).

    Article  Google Scholar 

  13. M. M. Shokrieh and M. N. Fakhar, “Experimental, analytical and numerical studies of composite,” Mech. Compos. Mater., 47, No. 6, 643-658 (2012).

    Article  Google Scholar 

  14. C. H. M. Simha and N. S. Brar. “Material model for high-hard steel and ballistic penetration simulations,” Eds by: Staudhammer K. P., Murr L. E., Meyers M. A., Fundamental Issues and Applications of Shock-Wave and High-Strain-Rate Phenomena. Oxford: Elsevier Sci. Ltd., 2001. p. 509-516.

  15. W. J. Kury, D. Breithaupt, and M. C. Tarver, “Detonation waves in trinitrotoluene,” Shock Waves, 9, No. 4, 227-237 (1999).

    Article  Google Scholar 

  16. V. Panov, “Modelling of behaviour of metals at high strain rates [PhD Thesis],”Cranfield: Cranfield University; 2005.

  17. X. Teng and T. Wierzbicki, “Evaluation of six fracture models in high velocity perforation,” Engineering Fracture Mechanics, 73, No. 12, 1653-1678 (2006).

    Article  Google Scholar 

  18. D. S. Cronin, K. Bui, C. Kaufmann, G. McIntosh, and T. Berstad, “Implementation and validation of the Johnson-Holmquist ceramic material model in LS-Dyna,” Proc. of 4th Europ. LS-DYNA Users Conf., Ulm, 22-23 May, p.47-60 (2003).

  19. A. Tasdemirci and I. W. Hall, “Numerical and experimental studies of damage generation in multi-layer composite materials at high strain rates,” Int. J. Impact Eng., 34, No. 2, 189-204 (2007).

    Article  Google Scholar 

  20. J. Buchar, S. Rolc, and G. Cozzani, “Numerical simulation of the penetration of 7.62 AP projectiles into ceramic armours,” 23rd Int. Symp. on Ballistics. Tarragona, 16-20 April, 2007, p. 1313-1320.

  21. T. Børvik, S. Dey, and Clausen A. H. “Perforation resistance of five different high-strength steel plates subjected to small arms projectiles,” Int. J. Impact Eng., 36, No. 7, 948-964 (2009).

  22. N. Kiliç and B. Ekici, “Ballistic resistance of high hardness armor steels against 7.62 mm armor piercing ammunition,” Materials and Design, 44, 35-48 (2013).

    Article  Google Scholar 

  23. C. G. Fountzoulas, B. A. Cheeseman, P. G. Dehmer, and J. M Sands, “A computational study of laminate transparent armor impacted by FSP”, 23rd Int. Symp. on Ballistics. Tarragona, 16-20 April, 2007. p. 873-881.

  24. D. Littlewood and T. Vogler, “Modeling dynamic fracture with peridynamics, finite element modeling and contact,” 11th US National Congress on Computational Mechanics. Minneapollis, 25-28 July, 2011.

  25. J. Lopez-Puente, A. Arias, R. Zaera, an C. Navarro, “The effect of thickness of the adhesive layer on the ballistic limit of ceramic/metal armours. An experimental and numerical study,” Int. J. Impact Eng., 32, No. 1-4, 321-336 (2005).

  26. C. J. Roberson, “Ceramic materials and their use in lightweight armour systems,” In: Proc. of Lightweight Armour Symp., Cranfield, 28-30 June, 1995.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Muzolf.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 52, No. 3, pp. 473-490, May-June, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morka, A., Kędzierski, P. & Muzolf, P. Optimization of the Structure of a Ceramic-Aluminum Alloy Composite Subjected to the Impact of Hard Steel Projectiles. Mech Compos Mater 52, 333–346 (2016). https://doi.org/10.1007/s11029-016-9586-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-016-9586-z

Keywords

Navigation