Skip to main content
Log in

Mechanical Behavior of Sandwich Composites Under Three-Point Bending Fatigue

  • Published:
Mechanics of Composite Materials Aims and scope

The mechanical behavior of sandwich composite materials in fatigue loading is investigated. Fatigue tests in three-point bending were conducted on two types of sandwich materials, [04] and [0/902/0]. The rupture mode observed on tested specimens showed a debond between the core and skins, as well as cracks in the core at 45∙ to the neutral axis of sandwich. Degradation of the rigidity modulus in fatigue was determined from the deflection equation for the two sandwiches. The experiments revealed that the modulus of the [04] sandwich degraded faster than that of [0/902/0]. The evolution of shear modulus in fatigue of both sandwiches is also described analytically using exponential and polynomial models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P.Hamelin, “Le dimensionnement des structures sandwichs - Méthodologie et études de cas,” Workshop Comett. Nevers., 1994.

  2. D. Zinkert, The Handbook of Sandwich Construction, Emas publishing, 1997.

  3. J.-M. Berthelot, Matériaux Composites. Comportement Mécanique et Analyse des Structures, 3e édition. Edition TEC & DOC, Paris, 1999.

  4. P. Brøndsted, S. I. Andersen, and H. Lilholt, “Fatigue performance of glass/polyester laminates and the monitoring of material degradation,” Mech. Compos. Mater., 32, No. 1, 21–29 (1996).

    Article  Google Scholar 

  5. D. Gay Matériaux Composites, 3e édition revue et augmentée, édition Hermès, Paris, 1991.

  6. S. M. Lee, Handbook of Composite Reinforcements. VCH Publ., 1993.

  7. M. F. Ashby, L. J. Gibson, − “Cellular Solids”, 2nd ed., Cambridge University press, 1997.

  8. F. J.. Plantema, Sandwich Construction, John Wiley and Sons, N. Y., 1966.

    Google Scholar 

  9. V. A. Polyakov, I. G. Zhigun, R. P. Shlitsa, and V. V. Khitrov, “A refined model for three-point bending of sandwich panels. 1. Deflections and bending stresses,” Mech. Compos. Mater., 33, No. 6, 526–542 (1997).

    Article  Google Scholar 

  10. A. Petras and M. P. F. Sutcliffe, “Indentation failure analysis of sandwich beams,” Compos. Struct., 50, 311–318 (2000).

    Article  Google Scholar 

  11. A. Petras and M. P. F. Sutcliffe, “Indentation resistance of sandwich beams,” Compos. Struct., 46, 413–424 (1999).

    Article  Google Scholar 

  12. T. C. Triantafillou and L. J. Gibson, Mater. Sci. and Engng., 95, 37–53 (1987).

    Article  Google Scholar 

  13. P. G.Bergan, L. Buene, A. T. Echtermeyer, and B. Hayman, “Assessment of FRP sandwich structures for marine applications// Marine Structures, 7, 457–473 (1994).

  14. W. D. Bertelsen, M. Eyre, and D. L. Sikarskie, “Verification of the hydro- mat test system for sandwich panels,” Sandwich Constructions 3. Vol. 1. UK: Engineering Materials Advisory Service. 1995. p. 269–280.

  15. G. Caprino, R. Teti, and M. Messa, “Long-term behaviour of PVC foam cores for structural sandwich construction,” Sandwich Constructions 3. Vol. 2. UK: Engineering Materials Advisory Service. 1995. p. 813–824.

  16. J. L.Chevalier, “Creep fatigue and fire resistance of chemical tank sandwich cores,”. J. of Reinforced Plastics and Composites, 13, 250–261 (1994).

    Article  Google Scholar 

  17. M. Kenane, S. Benmdakhene, and Z. Azari, “Fracture and study of unidirectional glass/epoxy laminate under different modes of loading,” Fatigue and Fracture of Engineering Materials and Structures, 3, Iss. 5, 284–293 (2010).

    Google Scholar 

  18. A. El Mahi, M. Khawar Farooq, S. Sahraoui, and A. Bezazi, “Modeling the flexural behavior of sandwich composite materials under cyclic fatigue,” Materials and Design, 25, 199–208 (2004).

    Article  Google Scholar 

  19. W. Hwang and K. S. Han, “Fatigue modulus concept and life prediction,” J. Compos. Mater., 20, 154–165 (1986).

    Article  Google Scholar 

  20. V. Tamužs, J. Andersons, K. Aniskevich, J. Jansons, and J. Korsgaard, “Creep and damage accumulation in orthotropic composites under cyclic loading,” Mech. Compos. Mater., 34, No. 4, 321–330 (1998).

    Article  Google Scholar 

  21. H. J. Kim, “Evaluation of durability and strength of stitched foam core sandwich structures,” Compos. Struct., 47, 543–550 (1999).

    Article  Google Scholar 

  22. R. A. Shenoi, S. D. Clark, and H. G. Allen, “Fatigue behaviour of polymer composite sandwich beams,” J. Compos. Mater., 29, No. 18, 2423–2445 (1995).

    Article  Google Scholar 

  23. S. P. Timoshenko, Résistance des Matériaux, Dunod, Paris, Tome 1, 1968.

  24. D.Baptiste, S. J. Wang, and D. François, “Comportement en Fatigue d’un Unidirectionnel en Verre/epoxy,” AMAC, 1990.

  25. P. M. Barnard, R. J. Butler, and P. T. Curtis, “The strengh-life equal rank assumption and its application to the fatigue life predictions of composite materials,” Int. J. of Fatigue, 10, No. 3, 171–177 (1988).

    Article  Google Scholar 

  26. H. T. Hahn and R. Y. Kim, “Fatigue behavior of composite materials,” J. Compos. Mater., 10, 156–180 (1976).

    Article  Google Scholar 

  27. J. N. Yang, D. L. Jones, S. H. Yang, and A. Meskini, “A stiffness degradation model for graphite/epoxy laminates,” J. Compos. Mater., 24, 753–769 (1990).

    Article  Google Scholar 

  28. A. Quispitupa, C. Berggreen, and L. A. Carlsson “On the analysis of a mixed mode bending sandwich specimen for debond fracture characterization,” Engineering Fracture Mechanics, 76, 594–613 (2009).

    Article  Google Scholar 

  29. D. Y. Seong and D. Y. Yang, “Semi-analytic approach for sandwich plate U-bending considering shear deformation of the core,” Int. J. Mech. Sci., 64, 258–272 (2012).

    Article  Google Scholar 

  30. B. D. Manshadi, A. P. Vassilopoulos, J. de Castro, and T. Keller, “Instability of thin-walled GFRP webs in cell-core sandwiches under combined bending and shear loads,” Thin-Walled Structures, 53, 200–210 (2012).

    Article  Google Scholar 

  31. D. Zenkert and M. Burman. “Failure mode shifts during constant amplitude fatigue loading of GFRP/foam core sandwich beams,” Int. J. of Fatigue, 33, 217–222 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Khelif.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 50, No. 6, pp. 1043–1056 , November-December, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bey, K., Tadjine, K., Khelif, R. et al. Mechanical Behavior of Sandwich Composites Under Three-Point Bending Fatigue. Mech Compos Mater 50, 747–756 (2015). https://doi.org/10.1007/s11029-015-9464-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-015-9464-0

Keywords

Navigation