Skip to main content
Log in

Finite-element modeling of the particle clustering effect in a powder-metallurgy-processed ceramic-particle-reinforced metal matrix composite on its mechanical properties

  • Published:
Mechanics of Composite Materials Aims and scope

A new numerical method is proposed to predict the effect of particle clustering on grain boundaries in a ceramic- particle-reinforced metal matrix composite on its mechanical properties, and micromechanical finite-element simulation of stress–strain responses in composites with random and clustered arrangements of ceramic particles are carried out. A particular material modeled and analyzed is a TiC-particle-reinforced Al matrix composite processed by powder metallurgy. A representative volume element of a composite microstructure with 5 vol.% TiC is reconstructed based on the tetrakaidecahedral grain boundary structure by using a modified random sequential adsorption. The model proposed in this study accurately represents the stress concentrations and particle-particle interactions during deformation of the powder-metallurgy-processed composite. A comparison with the random-arrangement model shows that the present numerical approach is more accurate in simulating the behavior of the composite material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T. Fujii and M. Zako, Fracture and Mechanics of Composite Materials, Jikkyo Shuppan, Tokyo (1978).

    Google Scholar 

  2. Z. Hashin and S. Shtrikman, “A variational approach to the theory of the elastic behaviour of multiphase materials,” J. Mech. Phys. Solids, 11, 127 (1963).

    Article  Google Scholar 

  3. B. D. Agarwal and L. J. Broutman, Analysis and Performance of Fiber Composites, John Wiley, New York (1990).

    Google Scholar 

  4. T. Mori and K. Tanaka, “Average stress in matrix and average elastic energy of materials with misfitting inclusions,” Acta Metall., 21, 571 (1973).

    Article  Google Scholar 

  5. J. Llorca, A. Needleman, and S. Suresh, “An analysis of the effects of matrix void growth on deformation and ductility in metal-ceramic composites,” Acta Metall. Mater., 42, 77 (1994).

    Article  Google Scholar 

  6. Y. L. Shen, M. Finot, A. Needleman, and S. Suresh, “Effective elastic response of two-phase composites,” Acta Metall. Mater., 42, 77 (1994).

    Article  CAS  Google Scholar 

  7. N. Chawla, B. V. Patel, M. Koopman, K. K. Chawla, R. Saha, B. R. Patterson, E. R. Fuller, and S. A. Langer, “Microstructure-based simulation of thermomechanical behavior of composite materials by object-oriented finite element analysis,” Mater. Charact., 49, No. 5, 395 (2002).

    Article  CAS  Google Scholar 

  8. A. A. Gusev, P. J. Hine, and I. M. Ward, “Fiber packing and elastic properties of a transversely random unidirectional glass/epoxy composite,” Compos. Sci. Technol., 60, No. 4, 535 (2000).

    Article  CAS  Google Scholar 

  9. N. Chawla, R. S. Sidhu, and V. V. Ganesh, “Three-dimensional visualization and microstructure-based modeling of deformation in particle-reinforced composites,” Acta Mater., 54, No. 6, 1541 (2006).

    Article  CAS  Google Scholar 

  10. K. U. Kainer, “Basics of metal matrix composites” in: Metal Matrix Composites, Willy-VCH, Germany (2006).

    Chapter  Google Scholar 

  11. K. S. Sohn, K. J. Euh, S. H. Lee, and I. M. Park, “Mechanical property and fracture behavior of squeeze-cast Mg matrix composites,” Metall. Mater. Trans. A, 29, 1543 (1998).

    Article  Google Scholar 

  12. I. Gheorghe and H. J. Rack, “Powder processing of metal matrix composites” in: T. W. Clyne (ed.), Comprehensive Composite Materials. Vol. 3. Metal Matrix Composite, Cambridge University Press, London (2000).

    Google Scholar 

  13. N. Chawla and K. K. Chawla, Metal Matrix Composite, Springer, New York (2005).

    Google Scholar 

  14. J. J. Lewandowski, C. Liu, and W. H. Hunt Jr., “Effects of matrix microstructure and particle distribution on fracture of an aluminum metal matrix composite,” Mater. Sci. Eng. A, 107, 241 (1989).

    Article  Google Scholar 

  15. A. H. Nagawa and M. N. Gungor, “Microstructure and tensile properties of Al2O3 particle-reinforced 6061 Al cast composite” in: P. K. Liaw and M. N. Gungor (eds.), Fundamental Relationships Between Microstructure and Mechanical Properties of Metal-Matrix Composites, TMS, Warrendale (1989).

    Google Scholar 

  16. N. Chawla, L. C. Davis, C. Andres, J. E. Allison, and J. W. Jones, “Effect of SiC volume fraction and particle size on the fatigue resistance of a 2080 Al/SiCp composite,” Metall. Mater. Trans. A, 29, 2843 (1998).

    Article  Google Scholar 

  17. N. Chawla, J. J. Williams, and R. Saha, “Mechanical behavior and microstructure characterization of sinter-forged SiC particle reinforced aluminum matrix composites,” J. Light Metals, 2, 215 (2002).

    Article  Google Scholar 

  18. J. Segurado, C. Gonzalez, and J. Llorca, “A numerical investigation of the effect of particle clustering on the mechanical properties of composites,” Acta Mater., 51, No. 8, 2355 (2003).

    Article  CAS  Google Scholar 

  19. D. F. Watt, X. Q. Xu, and D. J. Lloyd, “Effects of particle morphology and spacing on the strain fields in a plastically deforming matrix,” Acta Mater., 44, No. 2, 789 (1996).

    Article  CAS  Google Scholar 

  20. A. M. Murphy, S. J. Howard, and T. W. Clyne, “Characterisation of severity of particle clustering and its effect on fracture of particulate MMCs,” Mater. Sci. Technol., 14, Nos. 9-10, 242 (1998).

    Google Scholar 

  21. A. Borbely, H. Biermann, and O. Hartmann, “FE investigation of the effect of particle distribution on the uniaxial stress–strain behaviour of particulate-reinforced metal-matrix composites,” Mater. Sci. Eng. A, 34, 313 (2001).

    Google Scholar 

  22. X. Deng and N. Chawla, “Modeling the effect of particle clustering on the mechanical behavior of SiC-particle-reinforced Al matrix composites,” J. Mater. Sci., 41, 5731 (2006).

    Article  CAS  Google Scholar 

  23. J. C. Honore, P. Mele, and L. Flandin, “Influence of fibre clustering on the transverse mechanical behaviour of polypropylene/glass fibre composites: experimental approach and modeling,” J. Phys. D.: Appl. Phys., 40, 6768 (2007).

    Article  CAS  Google Scholar 

  24. A. Ayyar, G. A. Crawford, J. J. Williams, and N. Chawla, “Numerical simulation of the effect of particle spatial distribution and strength on the tensile behavior of particle-reinforced composites,” Comput. Mater. Sci., 44, 496 (2008).

    Article  CAS  Google Scholar 

  25. J. Segurado, C. Gonzalez, and J. Llorca, “A numerical investigation of the effect of particle clustering on the mechanical properties of composites,” Acta Mater., 51, 2355 (2003).

    Article  CAS  Google Scholar 

  26. B. Widom, “Random sequential addition of hard spheres to a volume,” J. Chem. Phys., 44, 3888 (1966).

    Article  Google Scholar 

  27. J. Choi, S. Park, B. Park, I. Park, and Y. Park, “Characterization of hypereutectic Al-20wt% Si/TiCp metal matrix composite,” Int. J. Modern Phys. B, 23, Nos. 6-7, 1491 (2009).

    CAS  Google Scholar 

  28. S. Kari, H. Berger, and U. Gabbert, “Numerical evaluation of effective material properties of randomly distributed short cylindrical fibre composites,” Comput. Mater. Sci., 39, No. 1, 198 (2007).

    Article  CAS  Google Scholar 

  29. J. L. Johnson and R. M. German, “Theoretical modeling of densification during activated solid-state sintering,” Metall. Mater. Trans., 27, No. 2, 441 (2007).

    Article  Google Scholar 

  30. Y. Nakasone, S. Yoshimoto, and T. A. Stolarski, Engineering Analysis with ANSYS Software, Butterworth-Heinemann, Oxford (2007).

    Google Scholar 

  31. L. Mishnaevsky Jr., “Methods of the theory of complex systems in modeling of fracture: a brief review,” Eng. Fract. Mech, 56, No. 1, 47 (1997).

    Article  Google Scholar 

  32. L. Mishnaevsky Jr., K. Derrien, and D. Baptiste, “Effect of microstructure of particle reinforced composites on the damage evolution: probabilistic and numerical analysis,” Compos. Sci. Technol., 64, 1805 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. H. Park.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 46, No. 6, pp. 931-942, November-December, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, W.J., Kim, Y.J., Kang, N.H. et al. Finite-element modeling of the particle clustering effect in a powder-metallurgy-processed ceramic-particle-reinforced metal matrix composite on its mechanical properties. Mech Compos Mater 46, 639–648 (2011). https://doi.org/10.1007/s11029-011-9177-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-011-9177-y

Keywords

Navigation