Skip to main content
Log in

Metrology of Single Photons for Quantum Information Technologies

  • OPTOPHYSICAL MEASUREMENTS
  • Published:
Measurement Techniques Aims and scope

A new approach is proposed for the metrology of optical measurements – the quantum metrology of photons. The specific nature of measurements of quantum polarization states of single and polarization-entangled photons is examined. The fundamental objectives of the modern metrology of photons are formulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. C. Biever, “China’s quantum space pioneer: We need to explore the unknown,” Nature News, Jan. 13, 2016.

  2. Cerberis QKD Blade, www.idquantique.com/quantum-safe-crypto/qkd-blade-server/, acces. 09.05.2016.

  3. X. S. Ma, T. Herbst, T. Scheidl, et al., “Quantum teleportation over 143 kilometers using active feed-forward,” Nature, 489, No. 7415, 269–273 (2012).

    Article  ADS  Google Scholar 

  4. J. Yin, J. G. Ren, H. Lu, et al., “Quantum teleportation and entanglement distribution over 100-kilometer free-space channels,” Nature, 488, 7410, 185–188 (2012).

    Article  ADS  Google Scholar 

  5. R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, et al., “Entanglement-based quantum communication over 144 km,” Nat. Phys., 3, No. 7, 481–486 (2007).

    Article  Google Scholar 

  6. S. Wang, W. Chen, J. F. Guo, et al., “2 GHz clock quantum key distribution over 260 km of standard telecom fiber,” Opt. Let., 37, No. 6, 1008–1010 (2012).

    Article  ADS  Google Scholar 

  7. D. R. Schilling, World’s First “Hack-Proof” Quantum Communications Satellite to Launch in 2016, www.industrytap.com/worlds-first-hack proof-quantum communications-satellite-launch-2016/33613, acces. 09.05.2016.

  8. D. Tiarks, S. Schmidt, G. Rempe, and S. Durr, “Optical π phase shift created with a single-photon pulse,” Sci. Advanc., 2, No. 4, e1600036 (2016).

    Article  ADS  Google Scholar 

  9. J. C. Zwinkels, E. Ikonen, N. P. Fox, et al., “Photometry, radiometry and ‘the candela’: evolution in the classical and quantum world,” Metrologia. 47, No. 5, R15–R32 (2010).

    Article  Google Scholar 

  10. S. Magnitskiy, D. Frolovtsev, V. Firsov, et al., “A SPDC-based source of entangled photons and its characterization,” J. Russ. Laser Res., 36, No. 6, 618–629 (2015).

    Article  Google Scholar 

  11. G. M. D’Ariano, M. G. Paris, and M. F. Sacchi, “Quantum tomography,” Adv. Imag. Electron. Phys., 128, 206 (2003).

    Google Scholar 

  12. D. H. Klyshko, “Coherent disintegration of photons in the nonlinear environment,” Pisma ZhETF, No. 6, 490 (1967).

  13. A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev., 47, No. 10, 777 (1935).

    Article  ADS  MATH  Google Scholar 

  14. P. G. Kwiat, E. Waks, A. G. White, et al., “Ultrabright source of polarization-entangled photons,” Phys. Rev. A, 60, R773 (1999).

    Article  ADS  Google Scholar 

  15. R. Jozsa, “Fidelity for mixed quantum states,” J. Mod. Opt., 41, 2315 (1994).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. W. K. Wooters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett., 80, No. 10, 2245–2248 (1998).

    Article  ADS  Google Scholar 

  17. D. Bouwmeester, A. Eker, and A. Zeilinger, The Physics of Quantum Information, Springer, Berlin (2000).

    Book  Google Scholar 

  18. D. T. Smithey, M. Beck, J. Cooper, and M. G. Raymer, “Measurement of number-phase uncertainty relations of optical fields,” Phys. Rev. A, 48, No. 4, 3159 (1993).

    Article  ADS  Google Scholar 

  19. D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A, 64, No. 5, 052312 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  20. K. S. Kravtsov, S. S. Straupe, I. V. Radchenko, et al., “Experimental adaptive Bayesian tomography,” Phys. Rev. A, 87, No. 6, 062122 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Demin.

Additional information

Translated from Izmeritel’naya Tekhnika, No. 3, pp. 24–29, March, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magnitskii, S.A., Frolovtsev, D.N., Agapov, D.P. et al. Metrology of Single Photons for Quantum Information Technologies. Meas Tech 60, 235–241 (2017). https://doi.org/10.1007/s11018-017-1179-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-017-1179-2

Keywords

Navigation