Skip to main content
Log in

The tale of shear coefficients in Timoshenko–Ehrenfest beam theory: 130 years of progress

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The first-order shear deformable beam theory should be named after Stephen Timoshenko and Paul Ehrenfest in recognition of the significant contribution of both of them. The Timoshenko–Ehrenfest beam model can predict the flexure mechanics of short stubby beams with adequate accuracy if it has been enriched with a proper shear coefficient. The shear coefficient lies at the heart of the Timoshenko–Ehrenfest beam theory was apparently first introduced by Friedrich Engesser in the nineteenth century. Detecting the appropriate formula of the shear coefficient for solid rectangular cross-sections was surprisingly a challenging issue in the literature. A stationary variational framework of the Timoshenko–Ehrenfest beam, founded on the elasticity theory, is conceived and applied to set forth the variationally consistent shear coefficient of a prismatic beam of a solid rectangular cross-section. Evidence of efficacy of the introduced shear coefficient is illustrated as the intrinsic anomalies of the counterpart shear coefficients are thoroughly discussed. The present study may pave the way ahead in appreciating the significance of implementing the apposite formula of the shear coefficient associated with the Timoshenko–Ehrenfest beam theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

A :

Cross-sectional area

\({\mathfrak{A}}\) :

Rectangular cross-section

\({\mathbf{b}}\) :

Body force

b :

Half width of cross-section

\({\mathcal{B}}\) :

General bounded region

\(\partial {\mathcal{B}}\) :

Closed boundary of the region

\({\mathbf{E}}\) :

Strain field

E :

Young’s modulus

\(\Im\) :

Stationary variational functional

G :

Shear modulus

h :

Half height of cross-section

I :

Second area moment of the cross-section

\(k\) :

Shear coefficient

\(\ell\) :

Length of beam

m :

Distributed bending couple

M :

Flexural moment field

q :

Distributed transversal loading

\({\mathbb{S}}\) :

Compliance tensor of elasticity

\({\mathbf{t}}\) :

Surface traction

\({\mathbf{T}}\) :

Stress field of the inflected elastic beam

\(u\) :

Centroidal deflection

\({\mathbf{u}}\) :

Displacement field of the beam

\(V\) :

Distribution of the shear force

\(x,y,z\) :

Cartesian orthogonal coordinates

\(\chi\) :

Auxiliary parameter

\(\nu\) :

Poisson’s ratio

\(\rho\) :

Destiny of the beam

\(\psi\) :

Total rotation in the xz plane

\(\zeta\) :

Aspect ratio of the rectangle

\(\Upsilon\) :

Shear flexibility of the cross-section

References

  1. Sladek J, Sladek V, Xu M, Deng Q (2021) A cantilever beam analysis with flexomagnetic effect. Meccanica 56:2281–2292. https://doi.org/10.1007/s11012-021-01357-9

    Article  MathSciNet  Google Scholar 

  2. Faghidian SA (2021) Contribution of nonlocal integral elasticity to modified strain gradient theory. Eur Phys J Plus 136:559. https://doi.org/10.1140/epjp/s13360-021-01520-x

    Article  Google Scholar 

  3. Faghidian SA (2021) Flexure mechanics of nonlocal modified gradient nanobeams. J Comput Des Eng 8:949–959. https://doi.org/10.1093/jcde/qwab027

    Article  Google Scholar 

  4. Banerjee A (2020) Non-dimensional analysis of the elastic beam having periodic linear spring mass resonators. Meccanica 55:1181–1191. https://doi.org/10.1007/s11012-020-01151-z

    Article  MathSciNet  Google Scholar 

  5. Failla G, di Paola M, Pirrotta A, Burlon A, Dunn I (2019) Random vibration mitigation of beams via tuned mass dampers with spring inertia effects. Meccanica 54:1365–1383. https://doi.org/10.1007/s11012-019-00983-8

    Article  MathSciNet  Google Scholar 

  6. Adam C, di Lorenzo S, Failla G, Pirrotta A (2017) On the moving load problem in beam structures equipped with tuned mass dampers. Meccanica 52:3101–3115. https://doi.org/10.1007/s11012-016-0599-4

    Article  MathSciNet  MATH  Google Scholar 

  7. Numanoğlu HM, Ersoy H, Civalek Ö, Ferreira AJM (2021) Derivation of nonlocal FEM formulation for thermo-elastic Timoshenko beams on elastic matrix. Compos Struct 273:114292. https://doi.org/10.1016/j.compstruct.2021.114292

    Article  Google Scholar 

  8. Failla G, Sofi A, Zingales M (2015) A new displacement-based framework for non-local Timoshenko beams. Meccanica 50:2103–2122. https://doi.org/10.1007/s11012-015-0141-0

    Article  MathSciNet  MATH  Google Scholar 

  9. Pirrotta A, Cutrona S, di Lorenzo S (2015) Fractional visco-elastic Timoshenko beam from elastic Euler–Bernoulli beam. Acta Mech 226:179–189. https://doi.org/10.1007/s00707-014-1144-y

    Article  MathSciNet  MATH  Google Scholar 

  10. Sofi A, Muscolino G, Elishakoff I (2015) Static response bounds of Timoshenko beams with spatially varying interval uncertainties. Acta Mech 226:3737–3748. https://doi.org/10.1007/s00707-015-1400-9

    Article  MathSciNet  MATH  Google Scholar 

  11. Laura PAA, Rossi RE, Maurizi MJ (1992) Vibrating Timoshenko beams, a tribute to the 70th anniversary of the publication of Professor S. Timoshenko’s epoch making contribution, Institute of Applied Mechanics and Department of Engineering, Universidad Nacional del Sur, Bahia Blanca, Argentina

  12. Koiter WT (1976) Some comments on the so-called Timoshenko beam theory. Report No. 597, Laboratory of Technical Mechanics, Delft University of Technology

  13. Elishakoff I (2019) Who developed the so-called Timoshenko beam theory. Math Mech Solids 25:97–116. https://doi.org/10.1177/1081286519856931

    Article  MathSciNet  MATH  Google Scholar 

  14. Elishakoff I, Kaplunov J, Nolde E (2015) Celebrating the centenary of Timoshenko’s study of effects of shear deformation and rotary inertia. Appl Mech Rev 67:060802. https://doi.org/10.1115/1.4031965

    Article  Google Scholar 

  15. Elishakoff I (2018) JP Den Hartog about SP Timoshenko: fifty years later. Math Mech Solids 24:1340–1348. https://doi.org/10.1177/1081286518792959

    Article  MathSciNet  MATH  Google Scholar 

  16. Elishakoff I (2019) Stepan Prokofievich Timoshenko and America. ZAMM J Appl Math Mech 99:e201800338. https://doi.org/10.1002/zamm.201800338

    Article  MathSciNet  Google Scholar 

  17. Challamel N, Elishakoff I (2019) A brief history of first-order shear-deformable beam and plate models. Mech Res Commun 102:103389. https://doi.org/10.1016/j.mechrescom.2019.06.005

    Article  Google Scholar 

  18. Eisenberger M (2003) Dynamic stiffness vibration analysis using a high-order beam element. Int J Numer Methods Eng 57:1603–1614. https://doi.org/10.1002/nme.736

    Article  MATH  Google Scholar 

  19. Reddy JN (1984) A simple higher-order theory for laminated composite plates. J Appl Mech 51:745–752. https://doi.org/10.1115/1.3167719

    Article  MATH  Google Scholar 

  20. Polizzotto C (2015) From the Euler–Bernoulli beam to the Timoshenko one through a sequence of Reddy-type shear deformable beam models of increasing order. Eur J Mech A Solids 53:62–74. https://doi.org/10.1016/j.euromechsol.2015.03.005

    Article  MathSciNet  MATH  Google Scholar 

  21. Carrera E, Brischetto S, Nali P (2011) Plates and shells for smart structures, United Kingdom. Wiley, New York

    Book  MATH  Google Scholar 

  22. Carrera E, Cinefra M, Petrolo M, Zappino E (2014) Finite element analysis of structures through unified formulation, United Kingdom. Wiley, New York

    Book  MATH  Google Scholar 

  23. Carrera E, Zozulya VV (2021) Closed-form solution for the micropolar plates: Carrera unified formulation (CUF) approach. Arch Appl Mech 91:91–116. https://doi.org/10.1007/s00419-020-01756-6

    Article  Google Scholar 

  24. Carrera E, Zozulya VV (2021) Carrera unified formulation (CUF) for the micropolar beams: analytical solutions. Mech Adv Mater Struct 28:583–607. https://doi.org/10.1080/15376494.2019.1578013

    Article  Google Scholar 

  25. Carrera E, Didem Demirbas M (2021) Evaluation of bending and post-buckling behavior of thin-walled FG beams in geometrical nonlinear regime with CUF. Compos Struct 275:114408. https://doi.org/10.1016/j.compstruct.2021.114408

    Article  Google Scholar 

  26. Cinefra M, Moruzzi MC, Bagassi S, Zappino E, Carrera E (2021) Vibro-acoustic analysis of composite plate-cavity systems via CUF finite elements. Compos Struct 259:113428. https://doi.org/10.1016/j.compstruct.2020.113428

    Article  Google Scholar 

  27. Bank LC, Melehan TP (1989) Shear coefficients for multicelled thin-walled composite beams. Compos Struct 11:259–276. https://doi.org/10.1016/0263-8223(89)90091-3

    Article  Google Scholar 

  28. Rychter Z (1987) On the shear coefficient in beam bending. Mech Res Commun 14:379–385. https://doi.org/10.1016/0093-6413(87)90059-0

    Article  MATH  Google Scholar 

  29. Mindlin RD, Deresiewicz H (1954) Thickness-shear and flexural vibrations of a circular disk. J Appl Phys 25:1320–1332. https://doi.org/10.1063/1.1721554

    Article  MathSciNet  MATH  Google Scholar 

  30. Yildirim V, Kiral E (2000) Investigation of the rotary inertia and shear deformation effects on the out-of-plane bending and torsional natural frequencies of laminated plates. Compos Struct 49:313–320. https://doi.org/10.1016/S0263-8223(00)00063-5

    Article  Google Scholar 

  31. Dong SB, Alpdogan C, Taciroglu E (2010) Much ado about shear correction factors in Timoshenko beam theory. Int J Solids Struct 47:1651–1665. https://doi.org/10.1016/j.ijsolstr.2010.02.018

    Article  MATH  Google Scholar 

  32. Steinboeck A, Kugi A, Mang HA (2013) Energy-consistent shear coefficients for beams with circular cross sections and radially inhomogeneous materials. Int J Solids Struct 50:1859–1868. https://doi.org/10.1016/j.ijsolstr.2013.01.030

    Article  Google Scholar 

  33. Cowper GR (1966) The shear coefficient in Timoshenko’s beam theory. J Appl Mech 33:335–340. https://doi.org/10.1115/1.3625046

    Article  MATH  Google Scholar 

  34. Stephen NG (1980) Timoshenko’s shear coefficient from a beam subjected to gravity loading. J Appl Mech 47:121–127. https://doi.org/10.1115/1.3153589

    Article  MATH  Google Scholar 

  35. Pai PF, Schulz MJ (1999) Shear correction factors and an energy-consistent beam theory. Int J Solids Struct 36:1523–1540. https://doi.org/10.1016/S0020-7683(98)00050-X

    Article  MATH  Google Scholar 

  36. Hutchinson JR (2001) Shear coefficients for Timoshenko beam theory. J Appl Mech 68:87–92. https://doi.org/10.1115/1.1349417

    Article  MATH  Google Scholar 

  37. Chan KT, Lai KF, Stephen NG, Young K (2011) A new method to determine the shear coefficient of Timoshenko beam theory. J Sound Vib 330:3488–3497. https://doi.org/10.1016/j.jsv.2011.02.012

    Article  Google Scholar 

  38. Kennedy GJ, Hansen JS, Martins JRRA (2011) A Timoshenko beam theory with pressure corrections for layered orthotropic beams. Int J Solids Struct 48:2373–2382. https://doi.org/10.1016/j.ijsolstr.2011.04.009

    Article  Google Scholar 

  39. Schramm U, Kitis L, Kang W, Pilkey WD (1994) On the shear deformation coefficient in beam theory. Finite Elem Anal Des 16:141–162. https://doi.org/10.1016/0168-874X(94)00008-5

    Article  MATH  Google Scholar 

  40. Gruttmann F, Wagner W (2001) Shear correction factors in Timoshenko’s beam theory for arbitrary shaped cross-sections. Comput Mech 27:199–207. https://doi.org/10.1007/s004660100239

    Article  MATH  Google Scholar 

  41. Elishakoff I (2020) Handbook of Timoshenko–Ehrenfest beam and Uflyand–Mindlin plate theories. World Scientific, Singapore

    Google Scholar 

  42. Engesser F (1981) Üer Knickfestigkeit gerader Stäbe. Z Arch Ing Vereins Hannover 35:733–744 (in German)

    Google Scholar 

  43. Föppl A (1987) Vorlesungen über Technische Mechanik-Dritter Band: Festigkeitslehre. B.G. Teubner, Leipzig (in German)

    MATH  Google Scholar 

  44. Iesan D (2009) Classical and generalized models of elastic rods. CRC series: modern mechanics and mathematics. CRC Press, Boca Raton

    Google Scholar 

  45. Faghidian SA (2016) Unified formulation of the stress field of Saint-Venant’s flexure problem for symmetric cross-sections. Int J Mech Sci 111–112:65–72. https://doi.org/10.1016/j.ijmecsci.2016.04.003

    Article  Google Scholar 

  46. Faghidian SA (2020) Two-phase local/nonlocal gradient mechanics of elastic torsion. Math Methods Appl Sci. https://doi.org/10.1002/mma.6877

    Article  Google Scholar 

  47. Faghidian SA, Żur KK, Reddy JN (2022) A mixed variational framework for higher-order unified gradient elasticity. Int J Eng Sci 170:103603. https://doi.org/10.1016/j.ijengsci.2021.103603

    Article  MathSciNet  MATH  Google Scholar 

  48. Faghidian SA, Żur KK, Pan E, Kim J (2022) On the analytical and meshless numerical approaches to mixture stress gradient functionally graded nano-bar in tension. Eng Anal Bound Elem 134:571–580. https://doi.org/10.1016/j.enganabound.2021.11.010

    Article  MathSciNet  MATH  Google Scholar 

  49. Żur KK, Faghidian SA (2021) Analytical and meshless numerical approaches to unified gradient elasticity theory. Eng Anal Bound Elem 130:238–248. https://doi.org/10.1016/j.enganabound.2021.05.022

    Article  MathSciNet  MATH  Google Scholar 

  50. Reddy JN (2017) Energy principles and variational methods in applied mechanics, 3rd edn. Wiley, New York

    Google Scholar 

  51. Renton JD (1991) Generalized beam theory applied to shear stiffness. Int J Solids Struct 27:1955–1967. https://doi.org/10.1016/0020-7683(91)90188-L

    Article  MATH  Google Scholar 

  52. Faghidian SA (2017) Unified formulations of the shear coefficients in Timoshenko beam theory. J Eng Mech 143:06017013. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001297

    Article  Google Scholar 

  53. Timoshenko SP (1920) On the differential equation for the flexural vibrations of prismatic rods. Glas Hrvat Prir Druš 32:55–77

    Google Scholar 

  54. Kaneko T (1975) On Timoshenko’s correction for shear in vibrating beams. J Phys D: Appl Phys 8:1927–1939. https://doi.org/10.1088/0022-3727/8/16/003

    Article  Google Scholar 

  55. Timoshenko SP (1922) On the buckling of deep beams. Letters to the editor. Philos Mag 43:1023–1024. https://doi.org/10.1080/14786442208633955

    Article  Google Scholar 

  56. Kaneko T (1978) An experimental study of the Timoshenko’s shear coefficient for flexurally vibrating beams. J Phys D: Appl Phys 11:1979. https://doi.org/10.1088/0022-3727/11/14/010

    Article  Google Scholar 

  57. Hutchinson JR (1981) Transverse vibrations of beams, exact versus approximate solutions. J Appl Mech 48:923–928. https://doi.org/10.1115/1.3157757

    Article  Google Scholar 

  58. Wittrick WH (1987) Analytical, three-dimensional elasticity solutions of some plate problems, and some observations on Mindlin’s plate theory. Int J Solids Struct 23:441–464. https://doi.org/10.1016/0020-7683(87)90010-2

    Article  MATH  Google Scholar 

  59. Stephen NG (1997) Mindlin plate theory: best shear coefficient and higher spectra validity. J Sound Vib 202:539–553. https://doi.org/10.1006/jsvi.1996.0885

    Article  Google Scholar 

  60. Zhilin PA (2007) Applied mechanics: theory of thin elastic rods. St. Petersburg University Press, St. Petersburg (in Russian)

    Google Scholar 

  61. Mekhtiev MF (2018) Vibration of hollow elastic bodies. Springer, Berlin

    Book  MATH  Google Scholar 

  62. Stephen NG, Levinson M (1979) A second order beam theory. J Sound Vib 67:293–305. https://doi.org/10.1016/0022-460X(79)90537-6

    Article  MATH  Google Scholar 

  63. Stephen NG (2001) Discussion: shear coefficients for Timoshenko beam theory. J Appl Mech 68:959–960. https://doi.org/10.1115/1.1412454

    Article  Google Scholar 

  64. Puchegger S, Bauer S, Loidl D, Kromp K, Peterlik H (2003) Experimental validation of the shear correction factor. J Sound Vib 261:177–184. https://doi.org/10.1016/S0022-460X(02)01181-1

    Article  MATH  Google Scholar 

  65. Hutchinson JR (2001) Closure to on shear coefficients for Timoshenko beam theory. J Appl Mech 68:960–961. https://doi.org/10.1115/1.1412455

    Article  Google Scholar 

  66. Faghidian SA (2018) On non-linear flexure of beams based on non-local elasticity theory. Int J Eng Sci 124:49–63. https://doi.org/10.1016/j.ijengsci.2017.12.002

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Ali Faghidian or Isaac Elishakoff.

Ethics declarations

Conflict of interest

The authors declare that they have no known conflict of interest or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faghidian, S.A., Elishakoff, I. The tale of shear coefficients in Timoshenko–Ehrenfest beam theory: 130 years of progress. Meccanica 58, 97–108 (2023). https://doi.org/10.1007/s11012-022-01618-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-022-01618-1

Keywords

Navigation