Skip to main content
Log in

Estimation and elimination of eigenvalue splitting and vibration instability of ring-shaped periodic structure subjected to three-axis angular velocity components

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Stable operation is one of the most crucial requirements for resonators in vibratory gyroscopes and ultrasonic motors, but eigenvalue splitting can deteriorate operation stability. This work aims at the estimation and elimination of eigenvalue splitting and vibration instability of resonators arranged in a fashion of ring-shaped periodic structures (RPS). An analytical model is developed by Hamilton’s principle, where in-plane bending displacements, grouped supports and angular velocity components applied about three orthogonal directions are incorporated. Eigensolutions for the proposed rotational and mirror symmetric topologies are formulated by perturbation-superposition method, based on which eigenvalue splitting, vibration instability and their evolution with grouped supports and angular velocity are examined. The results verify the behaviors of splitting and instability share similar rules with those RPS having equally-spaced supports, but they change remarkably with grouping patterns. The dependences of grouping patterns and parameters on vibrations are demonstrated based on sample RPS. The splitting and instability are estimated by eigensolutions, and they can be suppressed or even eliminated by the proposed two types of topologies. Comparisons between the two topologies are made in terms of the requirements from engineering practice. Main results are also compared with those in the open literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

RPS:

Ring-shaped periodic structure

BTW:

Backward traveling wave

FTW:

Forward traveling wave

k v, k u :

Stiffnesses of uniform radial and tangential supports

o 0-x 0y 0z 0 :

Inertial coordinates

N :

Number of discrete supports

β :

Discrete supports’ inclination angle relative to the radial direction

k s :

Stiffness of discrete supports

i, j, k :

Unit vectors of inertial coordinates

o-xyz :

Body-fixed coordinates

Ω 0 :

Revolution speed of body-fixed coordinates around inertial coordinates

\( \varOmega_{x 0} \), \( \varOmega_{y 0} \), \( \varOmega_{z 0} \) :

Speed components around the three axes of inertial coordinates

q0 :

Arbitrary position on the neutral surface

q1 :

Instantaneous position of q0 after vibration

\( \varvec{r}_{{0}} \) :

Displacement vector of geometric center relative to the origin of inertial coordinates

\( \varvec{r}_{{\text{q}_{0} }} \) :

An arbitrary point relative to the geometric center of undeformed circular ring

\( \varvec{U}_{0} \) :

The point relative to \( {\text{q}}_{0} \) regarding the deformed circular ring

h :

Radial thickness

b :

Axial height

ρ :

Density

E :

Young’s modulus

R :

Neutral circle radius

o- :

Polar coordinates

v, u :

Radial and tangential displacements of a point on neutral plane in polar coordinates

\( \theta \) :

Position angle

t :

Time

N 1 :

Number of discrete support groups of rotational symmetric RPS

N 2 :

Number of discrete supports in each group of rotational symmetric RPS

N 3 :

Number of discrete support groups of mirror symmetric RPS

N 4 :

Number of discrete supports in each group of mirror symmetric RPS

\( G_{\text{R}}^{i} \) :

The ith (i = 1, 2,… N1) group in rotational symmetric topology in Fig. 2a

\( {\text{L}}_{\text{R}}^{i,j} \) :

The jth (j = 1, 2,… N2) support in the ith (i = 1, 2,… N1) group in rotational symmetric topology in Fig. 2a

\( G_{\text{M}}^{i} \) :

The ith (i = 1, 2) group in mirror symmetric topology in Fig. 2b

\( {\text{L}}_{\text{R}}^{i,j} \) :

The jth (j = 1, 2,… N4) support in the ith (i = 1, 2) group in mirror symmetric topology in Fig. 2b

\( \theta_{i,j} \) :

Position angle of the jth (j = 1, 2,… N2 in Fig. 2a or N4 in Fig. 2b) support of the ith (i = 1, 2,… N1 in Fig. 2a or N3 in Fig. 2b) group

\( \alpha \) :

Position angle between two adjacent supports in the same group

T :

Kinetic energy

ε θ :

Tangential strain

ε θ0 :

Tangential strain in neutral plane

ε θ1 :

Membrane strain

\( \hat{U}_{0} \) :

Potential energy from bending deformation of circular ring

A :

Cross-section area

I :

Sectional moment of inertia

\( \hat{U}_{1} \) :

Potential energy of discrete supports

\( \varepsilon \) :

Non-dimensional small parameter

\( \delta \) :

Dirac delta function

\( N_{\text{I}} \) :

Group count, which satisfies \( N_{\text{I}} = N_{1} \) for rotational symmetric RPS or \( N_{\text{I}} = N_{3} \) for mirror symmetric one

\( N_{\text{II}} \) :

Support count in each group, which satisfies \( N_{\text{II}} = N_{2} \) for rotational symmetric RPS or \( N_{\text{II}} = N_{4} \) for mirror symmetric one

\( \hat{U}_{2} \) :

Potential energy of uniform external supports

\( \bar{t} \) :

Dimensionless time

\( \bar{k}_{\text{s}} \) :

Dimensionless support stiffness

\( \bar{u} \) :

Dimensionless tangential displacement

\( \bar{v} \) :

Dimensionless radial displacement

\( \bar{k}_{u} \) :

Dimensionless tangential support stiffness

\( \bar{k}_{v} \) :

Dimensionless radial support stiffness

\( \varvec{v}_{o} \) :

Revolution speed of the origin of body-fixed coordinates

\( v_{0x} \), \( v_{0y} \), \( v_{0z} \) :

Components of revolution speed in three orthogonal directions in body-fixed coordinates

\( \bar{v}_{0x} \), \( \bar{v}_{0y} \), \( \bar{v}_{0z} \) :

Dimensionless components of revolution speed in the three orthogonal directions in body-fixed coordinates

\( r_{n0} \) :

Eigenvalue of uniform circular ring

r n :

Eigenvalue of RPS

r n1 :

The first-order perturbation of the eigenvalue of RPS

\( A_{n} \) :

Amplitude

~:

Complex conjugate operation

i:

Imaginary unit, \( {\text{i}} = \sqrt { - 1} \)

n :

Wavenumber

\( x_{1} \), \( x_{2} \) :

Plural variables

k, k 1k 5 :

Positive integers

\( x_{{{\text{q}}_{0} }} \), \( y_{{{\text{q}}_{0} }} \) :

Coordinates of point \( {\text{q}}_{0} \)

\( U_{0x} \), \( U_{0y} \) :

Vibration displacements about x and y axes

x 0, y 0, z 0 :

The three axes of the inertial coordinates

v, u :

Radial and tangential displacements

c:

Cosine

s:

Sine

\( {\text{R}} \) :

Rotational symmetry

M:

Mirror symmetry

P:

Pure-imaginary

I:

Impure-imaginary

bs:

Sine-mode of backward traveling wave

bc:

Cosine-mode of backward traveling wave

fs:

Sine-mode of forward traveling wave

fc:

Cosine-mode of forward traveling wave

References

  1. Kim M, Moon J, Wickert JA (2000) Spatial modulation of repeated vibration modes in rotationally periodic structures. ASME J Vib Acoust 122:62–68

    Article  Google Scholar 

  2. Lopez I, Blomb REA, Roozena NB et al (2007) Modelling vibrations on deformed rolling tyres-a modal approach. J Sound Vib 307:481–494

    Article  ADS  Google Scholar 

  3. Zhao CS (2007) Ultrasonic motors technologies and applications. Beijing, China

    Google Scholar 

  4. Xi X, Wu YL, Wu XM et al (2012) Investigation on standing wave vibration of the imperfect resonant shell for cylindrical gyro. Sens Actuators A Phys 179:70–77

    Article  Google Scholar 

  5. Esmaeili M, Durali M, Jalili N (2006) Ring microgyroscope modeling and performance evaluation. J Vib Control 12:537–553

    Article  Google Scholar 

  6. Parker RG, Wu XH (2010) Vibration modes of planetary gears with unequally spaced planets and an elastic ring gear. J Sound Vib 329:2265–2275

    Article  ADS  Google Scholar 

  7. McWilliam S, Ong J, Fox CHJ (2005) On the statistics of natural frequency splitting for rings with random mass imperfections. J Sound Vib 279:453–470

    Article  ADS  Google Scholar 

  8. Bisegna P, Caruso G (2007) Frequency split and vibration localization in imperfect rings. J Sound Vib 306:691–711

    Article  ADS  Google Scholar 

  9. Wu XH, Parker RG (2006) Vibration of rings on a general elastic foundation. J Sound Vib 295:194–213

    Article  ADS  Google Scholar 

  10. Parker RG, Mote CD Jr (1996) Exact boundary condition perturbation solutions in eigenvalue problems. J Appl Mech 63:128–135

    Article  MathSciNet  Google Scholar 

  11. Wang YY, Wang SY, Zhu DH (2016) Dual-mode frequency splitting elimination of ring periodic structures via feature shifting. Proc IMechE Part C J Mech Eng Sci 230:3347–3357

    Article  Google Scholar 

  12. Fox CHJ (1990) A simple theory for the analysis and correction of frequency splitting in slightly imperfect rings. J Sound Vib 142:227–243

    Article  ADS  Google Scholar 

  13. Zhang DS, Wang SY, Liu JP (2014) Analytical prediction for free response of rotationally ring-shaped periodic structures. ASME J Vib Acoust 136:041016

    Article  Google Scholar 

  14. Sun WJ, Wang SY, Xia Y et al (2016) Natural frequency splitting and principal instability of rotating cyclic ring structures. Proc IMechE Part C J Mech Eng Sci 232:66–78

    Article  Google Scholar 

  15. Rourke AK, McWilliam S, Fox CHJ (2002) Multi-mode trimming of imperfect thin rings using masses at preselected locations. J Sound Vib 256:319–345

    Article  ADS  Google Scholar 

  16. Gallacher BJ, Hedley J, Burdess JS et al (2005) Electrostatic correction of structural imperfections present in a microring gyroscope. J Microelectromech Syst 14:221–234

    Article  Google Scholar 

  17. Yu RC, Mote CD Jr (1987) Vibration and parametric excitation in asymmetric circular plates under moving loads. J Sound Vib 119:409–427

    Article  ADS  Google Scholar 

  18. Wang SY, Sun WJ, Wang YY (2016) Instantaneous mode contamination and parametric combination instability of spinning cyclically symmetric ring structures with expanding application to planetary gear ring. J Sound Vib 375:366–385

    Article  ADS  Google Scholar 

  19. Yoon SW, Lee S, Najafi K (2011) Vibration sensitivity analysis of MEMS vibratory ring gyroscopes. Sens Actuators A Phys 171:163–177

    Article  Google Scholar 

  20. Liu YZ, Chen LQ (2010) Nonlinear Vibrations. Beijing, China

    Google Scholar 

  21. Nayfeh AH, Mook DT (1979) Nonlinear oscillations. Willey, New York

    MATH  Google Scholar 

Download references

Acknowledgements

Authors are grateful to the National Natural Science Foundation of China (Grant Nos. 51675368, 51721003 and 51705519) for supporting this research. Also, authors thank the reviewers and editor for their valuable comments and suggestions on this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiyu Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

This section calculates the kinetic energy with the method in Ref. [19]. The point q1 in Fig. 1 is expressed as

$$ \varvec{U}_{1} = \varvec{r}_{\text{0}} + \varvec{r}_{{\text{q}_{0} }} + \varvec{U}_{0} $$
(39)

where \( \varvec{r}_{\text{0}} \), \( \varvec{r}_{{\text{q}_{0} }} \) and \( \varvec{U}_{0} \) are displacement vectors of the geometric center relative to the origin of inertial coordinates, the arbitrary point with respect to the geometric center of the unformed ring, and the instantaneous position on the deformed ring relative to \( {\text{q}}_{0} \). \( \varvec{r}_{{\text{q}_{0} }} \) is written in o-xyz as

$$ \varvec{r}_{{{\text{q}}_{0} }} = x_{{{\text{q}}_{0} }} {\mathbf{i}} + y_{{{\text{q}}_{0} }} {\mathbf{j}} $$
(40)

where \( x_{{{\text{q}}_{0} }} \) and \( y_{{{\text{q}}_{0} }} \) are the coordinates. \( \varvec{U}_{0} \) is written as

$$ \varvec{U}_{0} = U_{0x} {\mathbf{i}} + U_{0y} {\mathbf{j}} $$
(41)

where \( U_{0x} \) and \( U_{0y} \) are vibration displacements about x and y axes, respectively.

In the inertial coordinates, the revolution speed can be expressed as

$$ \varvec{\varOmega}_{ 0} = \varOmega_{x 0} {\mathbf{i}} + \varOmega_{y 0} {\mathbf{j}} + \varOmega_{z 0} {\mathbf{k}} $$
(42)

Assuming the speed of origin is

$$ \varvec{v}_{o} = \frac{{\text{d}\varvec{r}_{ 0} }}{{\text{d}t}} = v_{0x} {\mathbf{i}} + v_{0y} {\mathbf{j}} + v_{0z} {\mathbf{k}} $$
(43)

where \( v_{0x} \), \( v_{0y} \) and \( v_{0z} \) are components in the three orthogonal directions, respectively. The speed of \( {\text{q}}_{0} \) is

$$ \varvec{v}_{{\text{q}_{0} }} = v_{{\text{q}_{0x} }} {\mathbf{i}} + v_{{\text{q}_{0y} }} {\mathbf{j}} + v_{{\text{q}_{0z} }} {\mathbf{k}} $$
(44)

where

$$ v_{{{\text{q}}_{0x} }} = v_{0x} + \dot{U}_{0x} - y_{{{\text{q}}_{0} }} \varOmega_{z0} - U_{0y} \varOmega_{z0} ,\;v_{{{\text{q}}_{0y} }} = v_{0y} + \dot{U}_{0y} - x_{{{\text{q}}_{0} }} \varOmega_{z0} + U_{0x} \varOmega_{z0} $$
$$ v_{{\text{q}_{0z} }} = v_{0z} + y_{{\text{q}_{0} }} \varOmega_{x 0} + U_{0y} \varOmega_{x 0} - x_{{{\text{q}}_{0} }} \varOmega_{y 0} - U_{0x} \varOmega_{y 0} $$

where “·” means the first derivative of variable versus time. Forming the dot product of velocities yields

$$ \begin{aligned} \varvec{v}_{{{\text{q}}_{0} }} \varvec{.v}_{{{\text{q}}_{0} }} & = \dot{U}_{0x}^{2} + \dot{U}_{0y}^{2} + 2\varOmega_{z0} (U_{0x} \dot{U}_{0y} - \dot{U}_{0x} U_{0y} ) + (\varOmega_{y0}^{2} + \varOmega_{z0}^{2} )U_{0x}^{2} \\ & \quad + \,(\varOmega_{x0}^{2} + \varOmega_{z0}^{2} )U_{0y}^{2} - 2\varOmega_{x0} \varOmega_{y0} y_{{{\text{q}}_{0} }} U_{0x} - 2\varOmega_{x0} \varOmega_{y0} x_{{{\text{q}}_{0} }} U_{0y} + 2(\varOmega_{x0}^{2} + \varOmega_{z0}^{2} )y_{{{\text{q}}_{0} }} U_{0y} \\ & \quad + \,2(v_{0x} - \varOmega_{z0} y_{{{\text{q}}_{0} }} )\dot{U}_{0x} + 2(v_{0y} + \varOmega_{z0} x_{{{\text{q}}_{0} }} )\dot{U}_{0y} + 2(\varOmega_{z0} v_{0y} - \varOmega_{y0} v_{0z} )U_{0x} \\ & \quad - \,2(\varOmega_{z0} v_{0x} - \varOmega_{x0} v_{0z} )U_{0y} - 2\varOmega_{x0} \varOmega_{y0} U_{0x} U_{0y} + 2(\varOmega_{y0}^{2} + \varOmega_{z0}^{2} )x_{{{\text{q}}_{0} }} U_{0x} \\ \end{aligned} $$
(45)

Equation (45) excludes the terms being irrelevant to the governing equation of motion. By introducing polar coordinates, the displacements are rewritten as

$$ \left[ {\begin{array}{*{20}c} {U_{{\text{0}x}} } \\ {U_{{\text{0}y}} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {\cos \theta } & { - \,\sin \theta } \\ {\sin \theta } & {\cos \theta } \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} v \\ u \\ \end{array} } \right] $$
(46)

Position of q0 is defined as

$$ \left[ {\begin{array}{*{20}c} {x_{{\text{q}_{0} }} } \\ {y_{{\text{q}_{0} }} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {R\cos \theta } \\ {R\sin \theta } \\ \end{array} } \right] $$
(47)

Substituting Eqs. (46) and (47) into (45) yields

$$ \begin{aligned} \varvec{v}_{{{\text{q}}_{0} }} .\varvec{v}_{{{\text{q}}_{0} }} & = \dot{u}^{2} + \dot{v}^{2} + 2\varOmega_{z0} (\dot{u}v - u\dot{v}) + (\varOmega_{y0}^{2} + \varOmega_{z0}^{2} )(v\cos \theta - u\sin \theta )^{2} \\ & \quad + \,2v_{0x} (\dot{v}\cos \theta - \dot{u}\sin \theta ) + 2v_{0y} (\dot{v}\sin \theta + \dot{u}\sin \theta ) + 2R(\varOmega_{z0} \dot{u} + \varOmega_{z0}^{2} v) \\ & \quad - \,2\varOmega_{x0} \varOmega_{y0} \left[ {R(v\sin 2\theta + u\cos 2\theta ) + (v\cos \theta - u\sin \theta )(v\sin \theta + u\cos \theta )} \right] \\ & \quad + \,2(\varOmega_{z0} v_{0y} - \varOmega_{y0} v_{0z} )(v\cos \theta - u\sin \theta ) + 2(\varOmega_{x0} v_{0z} - \varOmega_{z0} v_{0x} )(v\sin \theta + u\cos \theta ) \\ & \quad + \,(\varOmega_{x0}^{2} + \varOmega_{z0}^{2} )(v\sin \theta + u\cos \theta )^{2} + 2\varOmega_{x0}^{2} R(v\sin \theta + u\cos \theta )\sin \theta \\ & \quad + \,2\varOmega_{y0}^{2} R(v\cos \theta - u\sin \theta )\cos \theta \\ \end{aligned} $$
(48)

Appendix 2

See Tables 4, 5, 6, 7 and 8

Table 4 Eigenvalues of rotational symmetric RPS (pure-imaginary \( r_{n0} \), 2n/N1 = int)
Table 5 Eigenvalues of rotational symmetric RPS (impure-imaginary \( r_{n0} \), 2n/N1 = int)
Table 6 Eigenvalues of rotational symmetric RPS with 2n/N1\( { \ne } \) int
Table 7 Eigenvalues of mirror symmetric RPS (pure-imaginary \( r_{n0} \))
Table 8 Eigenvalues of mirror symmetric RPS (impure-imaginary \( r_{n0} \))

.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Wang, S., Wang, Z. et al. Estimation and elimination of eigenvalue splitting and vibration instability of ring-shaped periodic structure subjected to three-axis angular velocity components. Meccanica 54, 2539–2563 (2019). https://doi.org/10.1007/s11012-019-01094-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-019-01094-0

Keywords

Navigation