Skip to main content

Advertisement

Log in

Forces and moments exerted by incident internal waves on a plate-cylinder structure in a two-layer fluid

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Vertical cylindrical structures are widely used in offshore structures, for instance oil platforms, bridge foundations and so on. This paper presents incident internal waves interaction with a vertical circular cylinder under an elastic plate in a two-layer fluid in the framework of the potential flow theory. By means of an inner product and angular eigenfunction expansions, the effects of the characteristic parameters of structures and fluid on the shear pressures, horizontal forces and moments are investigated with numerical and graphical results. The conservation of energy as well as the relative error at the interface between the open water and plate-covered regions are discussed. Three cases of different boundary conditions of the cylinder are considered in order to investigate the the constraint forces and restraining moments of its ends. The results reveals that more energy can exchange between two wave modes owing to the presence of the elastic plate, which strengthens the horizontal forces on the cylinder. Incident waves of internal wave mode for a given frequency can cause complex polar distribution of the pressure around the cylinder. The values of constraint forces at ends of the cylinder are several times than those of the horizontal forces in some frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Stokes GG (1847) On the theory of oscillatory waves. Trans Camb Philos Soc 8:441–455

    Google Scholar 

  2. Lamb H (1932) Hydrodynamics, 6th edn. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  3. Linton C, McIver M (1995) The interaction of waves with horizontal cylinders in two-layer fluids. J Fluid Mech 304(1):213–229

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Linton C, Cadby J (2002) Scattering of oblique waves in a two-layer fluid. J Fluid Mech 461:343–364

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Paul S, De S (2018) Effects of vertical porous barrier on progressive waves in a two layered fluid. Ocean Eng 156:153–166

    Article  Google Scholar 

  6. Ko D, Cho Y (2017) A laboratory experiment on the surface and internal waves in two-layered fluids. Ocean Eng 146:257–267

    Article  Google Scholar 

  7. Yeung RW (1981) Added mass and damping of a vertical cylinder in finite-depth waters. Appl Ocean Res 3(3):119–133

    Article  Google Scholar 

  8. Rahman M, Bhatta D (1993) Evaluation of added mass and damping coefficient of an oscillating circular cylinder. Appl Math Model 17(2):70–79

    Article  MATH  Google Scholar 

  9. Faltinsen OM, Newman JN, Vinje T (1995) Nonlinear wave loads on a slender vertical cylinder. J Fluid Mech 289:179–198

    Article  ADS  MATH  Google Scholar 

  10. Cai S, Wang S, Long X (2006) A simple estimation of the force exerted by internal solitons on cylindrical piles. Ocean Eng 33(7):974–980

    Article  Google Scholar 

  11. Cai S, Long X, Wang S (2008) Forces and torques exerted by internal solitons in shear flows on cylindrical piles. Appl Ocean Res 30(1):72–77

    Article  Google Scholar 

  12. Fox C, Squire V (1994) On the oblique reflexion and transmission of ocean waves at shore fast sea ice. Philos Trans R Soc Lond Ser A Phys Eng Sci 347(1682):185–218

    Article  ADS  MATH  Google Scholar 

  13. Squire V (2007) Of ocean waves and sea-ice revisited. Cold Reg Sci Technol 49(2):110–133

    Article  Google Scholar 

  14. Squire V (2008) Synergies between vlfs hydroelasticity and sea ice research. Int J Offshore Polar Eng 18(4):241–253

    Google Scholar 

  15. Sahoo T, Yip T, Chwang A (2001) Scattering of surface waves by a semi-infinite floating elastic plate. Phys Fluids 13(11):3215–3222

    Article  ADS  MATH  Google Scholar 

  16. Xu F, Lu DQ (2009) An optimization of eigenfunction expansion method for the interaction of water waves with an elastic plate. J Hydrodyn 21(4):526–530

    Article  Google Scholar 

  17. Lin Q, Lu DQ (2013) Hydroelastic interaction between obliquely incident waves and a semi-infinite elastic plate on a two-layer fluid. Appl Ocean Res 43:71–79

    Article  Google Scholar 

  18. Koley S, Sahoo T (2017) Oblique wave scattering by horizontal floating flexible porous membrane. Meccanica 52(1):125–138

    Article  MathSciNet  Google Scholar 

  19. Malenica S, Korobkin AA (2003) Water wave diffraction by vertical circular cylinder in partially frozen sea. In: Proceedings of the 18th internations workshop on water waves and floating bodies. Le Croisic, France

  20. Brocklehurst P, Korobkin A, Părău E (2011) Hydroelastic wave diffraction by a vertical cylinder. Philos Trans R Soc A 369(1947):2832–2851

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Das D, Mandal B (2007) Wave scattering by a horizontal circular cylinder in a two-layer fluid with an ice-cover. Int J Eng Sci 45(10):842–872

    Article  MathSciNet  MATH  Google Scholar 

  22. Mohapatra S, Bora S (2012) Exciting forces due to interaction of water waves with a submerged sphere in an ice-covered two-layer fluid of finite depth. Appl Ocean Res 34:187–197

    Article  Google Scholar 

  23. Lin Q, Lu DQ (2014) Water wave diffraction by a bottom-mounted circular cylinder clamped to an elastic plate floating on a two-layer fluid. Eur J Mech 44(2):10–21

    Article  MathSciNet  MATH  Google Scholar 

  24. Lu DQ, Sun CZ (2013) Transient flexural-and capillary-gravity waves due to disturbances in two-layer density-stratified fluid. J Hydrodyn 25(3):339–347

    Article  Google Scholar 

  25. Xu F, Lu DQ (2010) Wave scattering by a thin elastic plate floating on a two-layer fluid. Int J Eng Sci 48(9):809–819

    Article  MathSciNet  MATH  Google Scholar 

  26. Mei C, Stiassnie M, Yue D (2005) Theory and applications of ocean surface waves: nonlinear aspects, vol 23. World Scientific, Singapore

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the associate editor and anonymous reviewers for their constructive comments. As the first author, I also would like to thank my wife Yanni He, new-born baby Yiheng Lin and my parents for their silent supports.

Funding

This research was supported by the Ministry of Industry and Information Technology (High-Tech Ship Research Projects, Grant No. [2016]548) and the Natural Science Foundation of Jiangsu Province (Grant No. BK20130109).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. Lin.

Ethics declarations

Conflict of interest

We declare that we have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$\begin{aligned}&\sum _m \left[ B_{n,0_{m}}\text{J}_{n}^{\text{B}_1}(\kappa _{0_m} R) +C_{n,0_{m}}\text{Y}_{n}^{\text{B}_1}(\kappa _{0_m} R)\right] \frac{\partial {\tilde{Z}}_{0_{m}}}{\partial z}\nonumber \\&\qquad + \sum _{j}\left[ B_{n,j} {\text{I}}_{n}^{\text{B}_1}(\kappa _j R)+C_{n,j}\text{K}_{n}^{\text{B}_1}(\kappa _j R) \right] \frac{\partial {\tilde{Z}}_{j}}{\partial z}=0, \end{aligned}$$
(52)
$$\begin{aligned}&\sum _m \left[ B_{n,0_{m}}{\text{J}}_{n}^{\text{B}_2}(\kappa _{0_m}R)+C_{n,0_{m}}\text{Y}_{n}^{\text{B}_2}(\kappa _{0_m}R)\right] \frac{\partial {\tilde{Z}}_{0_{m}}}{\partial z}\nonumber \\&\qquad + \sum _{j}\left[ B_{n,j}{\text{I}}_{n}^{\text{B}_2}(\kappa _j R)+C_{n,j}\text{K}_{n}^{\text{B}_2}(\kappa _j R)\right] \frac{\partial {\tilde{Z}}_{j}}{\partial z}=0,\end{aligned}$$
(53)
$$\begin{aligned}&\sum _m \left[ B_{n,0_{m}}{\text{J}}_{n}(\kappa _{0_m}a)+C_{n,0_{m}}{\text{Y}}_{n}(\kappa _{0_m}a)\right] \frac{\partial {\tilde{Z}}_{0_{m}}}{\partial z} \nonumber \\&\qquad + \sum _{j}\left[ B_{n,j}{\text{I}}_{n}(\kappa _j a)+C_{n,j}\text{K}_{n}(\kappa _j a) \right] \frac{\partial {\tilde{Z}}_{j}}{\partial z}=0, \end{aligned}$$
(54)
$$\begin{aligned}&\sum _m \left[ B_{n,0_{m}}\frac{\partial {\text{J}}_{n}(\kappa _{0_m}a)}{\partial r}+ C_{n,0_{m}}\frac{\partial {\text{Y}}_{n}(\kappa _{0_m}a)}{\partial r}\right] \frac{\partial {\tilde{Z}}_{0_{m}}}{\partial z} \nonumber \\&\qquad + \sum _{j}\left[ B_{n,j}\frac{\partial {\text{I}}_{n}(\kappa _ja)}{\partial r}+C_{n,j}\frac{\partial {\text{K}}_{n}(\kappa _ja)}{\partial r} \right] \frac{\partial {\tilde{Z}}_{j}}{\partial z}=0. \end{aligned}$$
(55)
$$\begin{aligned}&A_{n,0_{1}}\text{H}_n(k_{0_1} R) P_{0_{1}0_\text{1}}\nonumber \\&\quad =\sum _m \left[ B_{n,0_{m}}{\text{J}}_n(\kappa _{0_m} R)+C_{n,0_{m}}{\text{Y}}_n(\kappa _{0_m} R)\right] Q_{0_m0_{1}}\nonumber \\&\qquad + \sum _{j}\left[ B_{n,j}{\text{I}}_n(\kappa _j R)+C_{n,j}\text{K}_n(\kappa _j R) \right] Q_{j 0_{1}},\quad (l=0_{1}), \end{aligned}$$
(56)
$$\begin{aligned}&I_{0_{2}}{\text{i}}^n {\text{J}}_n(k_{0_2} R) P_{0_{2}0_{2}}+A_{n,0_{2}}{\text{H}}_n(k_{0_2} R) P_{0_{2}0_{2}}\nonumber \\&\quad =\sum _m \left[ B_{n,0_{m}}{\text{J}}_n(\kappa _{0_m} R)+C_{n,0_{m}}{\text{Y}}_n(\kappa _{0_m} R)\right] Q_{0_m0_{2}}\nonumber \\&\qquad + \sum _{j}\left[ B_{n,j}{\text{I}}_n(\kappa _j R)+C_{n,j}\text{K}_n(\kappa _j R)\right] Q_{j 0_{2}},\quad (l=0_{2}), \end{aligned}$$
(57)
$$\begin{aligned}&A_{n,i} {\text{K}}_n(k_i R) P_{i i}\nonumber \\&\quad =\sum _m \left[ B_{n,0_{m}}{\text{J}}_n(\kappa _{0_m} R)+C_{n,0_{m}}{\text{Y}}_n(\kappa _{0_m} R)\right] Q_{0_mi}\nonumber \\&\qquad + \sum _{j}\left[ B_{n,j}{\text{I}}_n(\kappa _j R)+C_{n,j}\text{K}_n(\kappa _j R) \right] Q_{j i}, \quad (l=i=1,2,\ldots ,M). \end{aligned}$$
(58)
$$\begin{aligned}&A_{n,0_{1}}\frac{\partial {\text{H}}_n(k_{0_1} R) }{\partial r} P_{0_{1}0_\text{1}}\nonumber \\&\quad =\sum _m \left[ B_{n,0_{m}}\frac{\partial {\text{J}}_n(\kappa _{0_m} R)}{\partial r} +C_{n,0_{m}}\frac{\partial {\text{Y}}_n(\kappa _{0_m} R) }{\partial r}\right] Q_{0_m0_{1}}\nonumber \\&\qquad + \sum _{j}\left[ B_{n,j}\frac{\partial {\text{I}}_n(\kappa _j R) }{\partial r} +C_{n,j}\frac{\partial {\text{K}}_n(\kappa _j R)}{\partial r} \right] Q_{j 0_{1}},\quad (l=0_{1}), \end{aligned}$$
(59)
$$\begin{aligned}&I_{0_{2}}{\text{i}}^n \frac{\partial {\text{J}}_{n}(k_{0_2} R)}{\partial r} P_{0_{2}0_{2}}+A_{n,0_{2}}\frac{\partial {\text{H}}_n(k_{0_2} R) }{\partial r} P_{0_{2}0_{2}}\nonumber \\&\quad =\sum _m \left[ B_{n,0_{m}}\frac{\partial {\text{J}}_n(\kappa _{0_m} R)}{\partial r} +C_{n,0_{m}}\frac{\partial {\text{Y}}_n(\kappa _{0_m} R) }{\partial r}\right] Q_{0_m0_{2}}\nonumber \\&\qquad + \sum _{j}\left[ B_{n,j}\frac{\partial {\text{I}}_n(\kappa _j R) }{\partial r} +C_{n,j}\frac{\partial {\text{K}}_n(\kappa _j R)}{\partial r} \right] Q_{j 0_{2}},\quad (l=0_{2}), \end{aligned}$$
(60)
$$\begin{aligned}&A_{n,i} \frac{\partial {\text{K}}_n(k_i R)}{\partial r} P_{i i}\nonumber \\&\quad =\sum _m \left[ B_{n,0_{m}}\frac{\partial {\text{J}}_n(\kappa _{0_m} R)}{\partial r} +C_{n,0_{m}}\frac{\partial {\text{Y}}_n(\kappa _{0_m} R) }{\partial r}\right] Q_{0_mi}\nonumber \\&\qquad + \sum _{j}\left[ B_{n,j}\frac{\partial {\text{I}}_n(\kappa _j R) }{\partial r} +C_{n,j}\frac{\partial {\text{K}}_n(\kappa _j R)}{\partial r} \right] Q_{j i}, \quad (l=i=1,2,\ldots ,M). \end{aligned}$$
(61)
$$\begin{aligned}&\sum _m \left[ B_{n,0_{m}}\frac{\partial {\text{J}}_n(\kappa _{0_m} a)}{\partial r} + C_{n,0_{m}}\frac{\partial {\text{Y}}_n(\kappa _{0_m} a) }{\partial r}\right] Q_{0_m0_{1}}\nonumber \\&\qquad + \sum _{j}\left[ B_{n,j}\frac{\partial {\text{I}}_n(\kappa _j a) }{\partial r} +C_{n,j}\frac{\partial {\text{K}}_n(\kappa _j a)}{\partial r} \right] Q_{j 0_{1}}=0,\quad (l=0_{1}), \end{aligned}$$
(62)
$$\begin{aligned}&\sum _m \left[ B_{n,0_{m}}\frac{\partial {\text{J}}_n(\kappa _{0_m} a)}{\partial r} +C_{n,0_{m}}\frac{\partial {\text{Y}}_n(\kappa _{0_m} a) }{\partial r}\right] Q_{0_m0_{2}}\nonumber \\&\qquad + \sum _{j}\left[ B_{n,j}\frac{\partial {\text{I}}_n(\kappa _j a) }{\partial r} +C_{n,j}{\tilde{K}}'_{n,j}(a) \right] Q_{j 0_{2}}=0,\quad (l=0_{2}), \end{aligned}$$
(63)
$$\begin{aligned}&\sum _m \left[ B_{n,0_{m}}\frac{\partial {\text{J}}_n(\kappa _{0_m} a)}{\partial r} +C_{n,0_{m}}\frac{\partial {\text{Y}}_n(\kappa _{0_m} a) }{\partial r}\right] Q_{0_mi}\nonumber \\&\qquad + \sum _{j}\left[ B_{n,j}\frac{\partial {\text{I}}_n(\kappa _j a) }{\partial r} +C_{n,j}\frac{\partial {\text{K}}_n(\kappa _j a)}{\partial r} \right] Q_{j i}=0, \quad (l=i=1,2,\ldots ,M), \end{aligned}$$
(64)

where

$$\begin{aligned}&Q_{cl}= \int _{-H}^{-h_1}{\tilde{Z}}_{c}Z_{l} {\text{d}}z + \gamma \int _{-h_1}^{0}{\tilde{Z}}_{c}Z_{l} {\text{d}}z,\nonumber \\&(c=0_{1},0_{2},{\text{I}},{\text{II}},1,2,\ldots ). \end{aligned}$$
(65)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Q., Du, X.G., Kuang, J. et al. Forces and moments exerted by incident internal waves on a plate-cylinder structure in a two-layer fluid. Meccanica 54, 1545–1560 (2019). https://doi.org/10.1007/s11012-019-01032-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-019-01032-0

Keywords

Navigation