Skip to main content
Log in

An efficient flat shell element

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Up to now, various flat shell’s elements are created by combining plane and bending plate elements. In the case of complicated problems with coarse distorted mesh, only using efficient element leads to the accurate responses. These kinds of the elements are insensitive to the distortion. In fact, they can identify and remove the related errors. In this paper, two internal and boundary fields are deployed in a hybrid functional for formulating the proposed plane element. The method is established based on the optimum strain states. Furthermore, Trefftz functionals for independent internal and boundary fields are employed to formulate the suggested bending element. In this procedure, the optimum strain states construct the internal field, and element’s boundary field is achieved by considering the beam behavior. Finally, the high efficiency of author’s element is assessed by solving several numerical samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Gal E, Levy R (2006) Geometrically nonlinear analysis structures using a flat triangular element. Arch Comput Methods Eng 13:331–388

    Article  MATH  Google Scholar 

  2. Zhang YX, Kim KS (2005) Linear and geometrically nonlinear analysis of plates and shells by a new refined nonconforming triangular plate/shell element. Comput Mech 36:331–342

    Article  MathSciNet  MATH  Google Scholar 

  3. Zhang Y, Zhou H, Li J, Feng W, Li D (2011) A 3-node flat triangular shell element with corner drilling freedoms and transverse shear correction. Int J Numer Methods Eng 86:1413–1434

    Article  MathSciNet  MATH  Google Scholar 

  4. Felippa CA (2003) A study of optimal membrane triangles with drilling freedoms. Comput Methods Appl Mech Eng 192:2125–2168

    Article  ADS  MATH  Google Scholar 

  5. Felippa CA (2006) Supernatural QUAD4: a template formulation. Comput Methods Appl Mech Eng 195:5316–5342

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Felippa CA (2004) A template tutorial. In: Mathisen KM, Kvamsdal T, Okstad KM (eds) Computational mechanics: theory and practice. CIMNE, Barcelona, pp 29–68

    Google Scholar 

  7. Rezaiee-Pajand M, Yaghoobi M (2012) Formulating an effective generalized four-sided element. Eur J Mech A/Solids 36:141–155

    Article  MathSciNet  MATH  Google Scholar 

  8. Rezaiee-Pajand M, Yaghoobi M (2013) A free of parasitic shear strain formulation for plane element. Res Civ Environ Eng 1:1–27

    Google Scholar 

  9. Rezaiee-Pajand M, Yaghoobi M (2014) An efficient formulation for linear and geometric non-linear membrane elements. Lat Am J Solids Struct 11:1012–1035

    Article  Google Scholar 

  10. Rezaiee-Pajand M, Yaghoobi M (2014) A robust triangular membrane element. Lat Am J Solids Struct 11:2648–2671

    Article  Google Scholar 

  11. Rezaiee-Pajand M, Yaghoobi M (2015) Two new quadrilateral elements based on strain states. Civ Eng Infrastruct J 48(1):133–156

    Google Scholar 

  12. Cen S, Zhou MJ, Fu XR (2011) A 4-node hybrid stress-function (HS-F) plane element with drilling degrees of freedom less sensitive to severe mesh distortions. Comput Struct 89:517–528

    Article  Google Scholar 

  13. Choo YS, Choi N, Lee BC (2006) Quadrilateral and triangular plane elements with rotational degrees of freedom based on the hybrid Trefftz method. Finite Elem Anal Des 42:1002–1008

    Article  Google Scholar 

  14. Choi N, Choo YS, Lee BC (2006) A hybrid Trefftz plane elasticity element with drilling degrees of freedom. Comput Methods Appl Mech Eng 195:4095–4105

    Article  ADS  MATH  Google Scholar 

  15. MacNeal RH, Harder RL (1988) A refined four-noded membrane element with rotational degrees of freedom. Comput Struct 28(1):75–84

    Article  MATH  Google Scholar 

  16. Tian R, Yagawa G (2007) Allman’s triangle, rotational DOF and partition of unity. Int J Numer Methods Eng 69:837–858

    Article  MATH  Google Scholar 

  17. Huang M, Zhao Z, Shen C (2010) An effective planar triangular element with drilling rotation. Finite Elem Anal Des 46:1031–1036

    Article  Google Scholar 

  18. Allman DJ (1984) Compatible triangular element including vertex rotations for plane elasticity analysis. Comput Struct 19:1–8

    Article  MATH  Google Scholar 

  19. Huges TJR, Brezzi F (1989) On drilling degrees of freedom. Comput Methods Appl Mech Eng 72:105–121

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Felippa CA (2009) Advanced finite element methods, 4th edn. Mubeen-UET, Lahore

    Google Scholar 

  21. Jirousek J, Leon JN (1977) A powerful finite element for plate bending. Comput Struct 12:77–96

    MathSciNet  MATH  Google Scholar 

  22. Jirousek J, Guex L (1986) The hybrid-Trefftz finite element model and its application to plate bending. Int J Numer Methods Eng 23:651–693

    Article  MathSciNet  MATH  Google Scholar 

  23. Choo YS, Choi N, Lee BC (2010) A new hybrid-Trefftz triangular and quadrilateral plate elements. Appl Math Model 34:14–23

    Article  MathSciNet  MATH  Google Scholar 

  24. Jirousek J (1987) Hybid Trefftz plate bending elements with p-method capabilities. Int J Numer Methods Eng 24:1367–1393

    Article  MATH  Google Scholar 

  25. Allman DJ (1984) A compatible triangular element including vertex rotations for plane elasticity analysis. Comput Struct 19:1–8

    Article  MATH  Google Scholar 

  26. Cook RD (1993) Further development of a three-node triangular shell element. Int J Numer Methods Eng 36(8):1413–1425

    Article  MATH  Google Scholar 

  27. Providas E, Kattis MA (2000) An assessment of two fundamental flat triangular shell elements with drilling rotations. Comput Struct 77(2):129–139

    Article  Google Scholar 

  28. Carpenter N, Stolarski H, Belytschko T (1986) Improvements in 3-node triangular shell elements. Int J Numer Methods Eng 23:1643–1667

    Article  MATH  Google Scholar 

  29. Stress analysis reference manual (1993) In MF/WARP 3D Warpage Analysis Release 3.0. Moldflow Pty. Ltd

  30. Kim JG, Lee JK, Park YK (2002) A new 3-node triangular-at shell element. Commun Numer Methods Eng 18:153–159

    Article  MATH  Google Scholar 

  31. Batoz JL, Bathe KJ, Ho LW (1980) A study of three-node triangular plate bending element. Int J Numer Methods Eng 15:1771–1812

    Article  MATH  Google Scholar 

  32. Katili I (1993) A new discrete Kirchhoff–Mindlin element based on Mindlin–Reissner plate theory and assumed shear strain fields—part I: an extended DKT element for thick-plate bending analysis. Int J Numer Methods Eng 36:1859–1883

    Article  MATH  Google Scholar 

  33. Chen W, Cheung YK (2001) Refined 9-Dof triangular Mindlin plate elements. Int J Numer Methods Eng 51:1259–1281

    Article  MATH  Google Scholar 

  34. Zienkiewicz OC, Lefebvre D (1988) A robust triangular plate bending element of the Reissner–Mindlin type. Int J Numer Methods Eng 26:1169–1184

    Article  MATH  Google Scholar 

  35. Sze KY, Zhu D, Chen DP (1997) Quadratic triangular C0 plate bending element. Int J Numer Methods Eng 40:937–951

    Article  MATH  Google Scholar 

  36. Bathe KJ, Brezzi F, Cho SW (1989) The MITC7 and MITC9 plate bending element. Comput Struct 32:797–814

    Article  MATH  Google Scholar 

  37. Batoz JL, Tahar MB (1982) Evaluation of a new quadrilateral thin plate bending element. Int J Numer Methods Eng 18:1655–1677

    Article  MATH  Google Scholar 

  38. Katili I (1993) A new discrete Kirchhoff–Mindlin element based on Mindlin–Reissner plate theory and assumed shear strain fields—Part II: an extended DKQ element for thick-plate bending analysis. Int J Numer Methods Eng 36:1885–1908

    Article  MATH  Google Scholar 

  39. Sofuoglu H, Gedikli H (2007) A refined 5-node plate bending element based on Reissner–Mindlin theory. Commun Numer Methods Eng 23:385–403

    Article  MATH  Google Scholar 

  40. Zienkiewicz OC, Cheung YK (1964) The finite element method for analysis of elastic isotropic and orthotropic slabs. Proc Inst Civ Eng 28:471–488

    Google Scholar 

  41. Malkus DS, Hughes TJR (1978) Mixed finite element methods-reduced and selective integration techniques: a unification of concepts. Comput Methods Appl Mech Eng 15:63–81

    Article  ADS  MATH  Google Scholar 

  42. Zienkiewicz OC, Xu Z, Ling FZ, Samuelsson A, Wiberg NE (1993) Linked interpolation for Reissner–Mindlin plate element: part I—a simple quadrilateral. Int J Numer Methods Eng 36:3043–3056

    Article  MATH  Google Scholar 

  43. Bathe KJ, Dvorkin EH (1985) A four-node plate bending element based on Mindlin–Reissner plate theory and mixed interpolation. Int J Numer Methods Eng 21:367–383

    Article  MATH  Google Scholar 

  44. Soh AK, Cen S, Long YQ, Long ZF (2001) A new twelve DOF quadrilateral element for analysis of thick and thin plates. Eur J Mech A Solids 20:299–326

    Article  MathSciNet  MATH  Google Scholar 

  45. Tocher JL, Kapur KK (1965) Basis of derivation of matrices for direct stiffness method. AIAA J 3(6):1215–1216

    Article  ADS  Google Scholar 

  46. Shin CM, Lee BC (2014) Development of a strain-smoothed three-node triangular flat shell element with drilling degrees of freedom. Finite Elem Anal Des 86:71–80

    Article  MathSciNet  Google Scholar 

  47. Wang C, Hu P, Xia Y (2012) A 4-node quasi-conforming Reissner–Mindlin shell element by using Timoshenko’s beam function. Finite Elem Anal Des 61:12–22

    Article  MathSciNet  Google Scholar 

  48. Norachan P, Suthasupradit S, Kim KD (2012) A co-rotational 8-node degenerated thin-walled element with assumed natural strain and enhanced assumed strain. Finite Elem Anal Des 50:70–85

    Article  MathSciNet  Google Scholar 

  49. Mostafa M, Sivaselvan MV, Felippa CA (2013) A solid-shell corotational element based on ANDES, ANS and EAS for geometrically nonlinear structural analysis. Int J Numer Methods Eng 95:145–180

    Article  MathSciNet  MATH  Google Scholar 

  50. Felippa CA, Alexander S (1992) Membrane triangles with corner drilling freedoms: III. Implementation and performance evaluation. Finite Elem Anal Des 12:203–239

    Article  MATH  Google Scholar 

  51. Bergan PG, Felippa CA (1985) A triangular membrane element with rotational degrees of freedom. Comput Methods Appl Mech Eng 50:25–69

    Article  ADS  MATH  Google Scholar 

  52. Timoshenko S, Woinowsky-Krieger S (1959) Theory of plates and shells. McGraw-Hill, New York

    MATH  Google Scholar 

  53. Morley LSD (1963) Skew plates and structures. Pergamon Press, Oxford

    MATH  Google Scholar 

  54. Razzaque A (1973) Program for triangular bending elements with derivative smoothing. Int J Numer Methods Eng 6:333–345

    Article  Google Scholar 

  55. Reissner E, Stein M (1951) Torsion and transverse bending of cantilever plates, Technical Note 2369, NACA, Washington DC

  56. Flügge W (1973) Stresses in shells. Springer, NewYork

    Book  MATH  Google Scholar 

  57. Macneal RH, Harder RL (1985) A proposed standard set of problems to test finite element accuracy. Finite Elem Anal Des 1(1):3–20

    Article  Google Scholar 

Download references

Funding

This study was not funded by any company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Rezaiee-Pajand.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaiee-Pajand, M., Yaghoobi, M. An efficient flat shell element. Meccanica 53, 1015–1035 (2018). https://doi.org/10.1007/s11012-017-0772-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-017-0772-4

Keywords

Navigation