Skip to main content
Log in

Homogenization of heterogeneous masonry beams

  • New Trends in Mechanics of Masonry
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

This study presents a two-scale model to describe the out-of-plane masonry response. One-dimensional (1D) structural elements, like masonry columns or strips of long wall characterized by the periodic repetition of bricks and mortar arranged in stack bond, are considered. A damage-friction plasticity law is adopted to model the mortar joint constitutive response, while the bricks are assumed as linear elastic. A 1D beam formulation is introduced at both the structural and micromechanical scale, linking the two levels by means of a kinematic map. This expresses the microscopic beam strains in the masonry unit cell (UC) as function of the macroscopic generalized strains. The kinematic field in the UC is completed by adding an unknown periodic fluctuation term. A nonlinear homogenization procedure is developed, proposing a semi-analytical solution for the micromechanical problem, based on the fiber discretization of the mortar joints. A force-based beam-column finite element procedure is adopted at the structural scale and the solution algorithm for the element state determination is illustrated in details. Some numerical applications, showing the UC constitutive response and the behavior of masonry structural elements, are finally presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Addessi D, Liberatore D, Masiani R (2015) Force-based beam finite element (FE) for the pushover analysis of masonry buildings. Int J Archit Herit 9(3):231–243

    Article  Google Scholar 

  2. Addessi D, Marfia S, Sacco E, Toti J (2014) Modeling approaches for masonry structures. Open Civ Eng J 8:288–300

    Article  Google Scholar 

  3. Addessi D, Mastrandrea A, Sacco E (2014) An equilibrated macro-element for nonlinear analysis of masonry structures. Eng Struct 70:82–93

    Article  Google Scholar 

  4. Addessi D, Sacco E (2016) Nonlinear analysis of masonry panels using a kinematic enriched plane state formulation. Int J Solids Struct 90:194–214

    Article  Google Scholar 

  5. AlShawa O, Sorrentino L, Liberatore D (2017) Simulation of shake table tests on out-of-plane masonry buildings. Part (II): combined finite-discrete elements. Int J Archit Herit 11(1):79–93

    Google Scholar 

  6. Atkinson RH, Amadei BP, Saeb S, Sture S (1989) Response of masonry bed joints in direct shear. J Struct Eng 115(9):2276–2296

    Article  Google Scholar 

  7. Berto L, Saetta A, Scotta R, Vitaliani R (2002) An orthotropic damage model for masonry structures. Int J Numer Methods Eng 55:127–157

    Article  MATH  Google Scholar 

  8. Cecchi A, Sab K (2007) A homogenized Reissner–Mindlin model for orthotropic periodic plates: application to brickwork panels. Int J Solids Struct 44(18):6055–6079

    Article  MATH  Google Scholar 

  9. Cecchi A, Sab K (2009) A homogenized Love–Kirchhoff model for out-of-plane loaded random 2d lattices: Application to “quasi-periodic” brickwork panels. Int J Solids Struct 46:2907–2919

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen S-Y, Moon FL, Yi T (2008) A macroelement for the nonlinear analysis of in-plane unreinforced masonry piers. Eng Struct 30(8):2242–2252

    Article  Google Scholar 

  11. Crespi P, Franchi A, Giordano N, Scamardo M, Ronca P (2016) Structural analysis of stone masonry columns of the Basilica S. Maria di Collemaggio. Eng Struct 129:81–90

    Article  Google Scholar 

  12. Drougkas A, Roca P, Molins C (2016) Nonlinear micro-mechanical analysis of masonry periodic unit cells. Int J Solids Struct 80:193–211

    Article  Google Scholar 

  13. Elmalich D, Rabinovitch O (2009) Masonry and monolithic circular arches strengthened with composite materials—A finite element model. Comput Struct 87(9–10):521–533

    Article  Google Scholar 

  14. Forgács T, Sarhosis V, Bagi K (2017) Minimum thickness of semi-circular skewed masonry arches. Eng Struct 140:317–336

    Article  Google Scholar 

  15. Gambarotta L, Lagomarsino S (1997) Damage models for the seismic response of brick masonry shear walls. Part I: the mortar joint model and its application. Earthq Eng Struct Dyn 26:423–439

    Article  Google Scholar 

  16. Ghosh S, Lee K, Raghavan P (2001) A multi-level computation model for multi-scale damage analysis in composite and porous media. Int J Solids Struct 38:2335–2385

    Article  MATH  Google Scholar 

  17. Giambanco G, Rizzo S, Spallino R (2001) Numerical analysis of masonry structures via interface models. Comput Methods Appl Mech Eng 190:6493–6511

    Article  ADS  MATH  Google Scholar 

  18. Heyman J (1969) The safety of masonry arches. Int J Mech Sci 11(4):363–385

    Article  Google Scholar 

  19. Ismail N, Ingham JM (2016) In-plane and out-of-plane testing of unreinforced masonry walls strengthened using polymer textile reinforced mortar. Eng Struct 118:167–177

    Article  Google Scholar 

  20. Kouznetsova VG, Geers MGD, Brekelmans WAM (2002) Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. Int J Numer Methods Eng 54:1235–1260

    Article  MATH  Google Scholar 

  21. Lin Y, Lawley D, Wotherspoon L, Ingham JM (2016) Out-of-plane testing of unreinforced masonry walls strengthened using ECC shotcrete. Structures 7:33–42

    Article  Google Scholar 

  22. Lofti HR, Shing BP (1994) Interface model applied to fracture of masonry structures. J Struct Eng 120:63–80

    Article  Google Scholar 

  23. Lourenço PB (1996) Computational strategies for masonry structures. PhD thesis, Delft University of Technology

  24. Lourenço PB, Rots JG, Blaauwendraad J (1998) Continuum model for masonry: parameter estimation and validation. J Struct Eng 124(6):642–652

    Article  Google Scholar 

  25. Massart TJ, Peerlings RHJ, Geers MGD (2007) An enhanced multi-scale approach for masonry wall computations with localization of damage. Int J Numer Methods Eng 69(5):1022–1059

    Article  MATH  Google Scholar 

  26. Massart TJ, Peerlings RHJ, Geers MGD (2007) Structural damage analysis of masonry walls using computational homogenization. Int J Damage Mech 16:199–226

    Article  Google Scholar 

  27. Mercatoris BCN, Bouillard Ph, Massart TJ (2009) Multi-scale detection of failure in planar masonry thin shells using computational homogenisation. Eng Fract Mech 76(4):479–499

    Article  Google Scholar 

  28. Mercatoris BCN, Massart TJ (2011) A coupled two-scale computational scheme for the failure of periodic quasi-brittle thin planar shells and its application to masonry. Int J Numer Methods Eng 85:1177–1206

    Article  MATH  Google Scholar 

  29. Milani G, Lourenço PB (2012) 3D non-linear behavior of masonry arch bridges. Comput Struct 110:133–150

    Article  Google Scholar 

  30. Pelà L, Cervera M, Roca P (2013) An orthotropic damage model for the analysis of masonry structures. Constr Build Mater 41:957–967

    Article  Google Scholar 

  31. Petracca M, Pelà L, Rossi R, Oller S, Camata G, Spacone E (2017) Multiscale computational first order homogenization of thick shells for the analysis of out-of-plane loaded masonry walls. Comput Methods Appl Mech Eng 315:273–301

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Rizzi E, Rusconi F, Cocchetti G (2014) Analytical and numerical DDA analysis on the collapse mode of circular masonry arches. Eng Struct 60:241–257

    Article  Google Scholar 

  33. Roca P, Cervera M, Gariup G, Pelà L (2010) Structural analysis of masonry historical constructions. Classical and advanced approaches. Arch Comput Methods Eng 17(3):299–325

    Article  MATH  Google Scholar 

  34. Sacco E (2009) A nonlinear homogenization procedure for periodic masonry. Eur J Mech A Solids 28(2):209–222

    Article  MATH  Google Scholar 

  35. Serpieri R, Albarella M, Sacco E A (2017) 3D microstructured cohesive-frictional interface model and its rational calibration for the analysis of masonry panels. Int J Solids Struct 122–123:110–127

    Article  Google Scholar 

  36. Spacone E, Ciampi V, Filippou FC (1996) Mixed formulation of nonlinear beam finite element. Comput Struct 58(1):71–83

    Article  MATH  Google Scholar 

  37. Suquet P (1987) Elements of homogenization for inelastic solid mechanics. In: Sanchez-Palencia E, Zaoui A (eds) Homogenization techniques for composite media. Springer, Berlin

    Google Scholar 

  38. van der Pluijm R (1999) Out of plane bending of masonry: behaviour and strength. PhD thesis, Eindhoven University of Technology

  39. Witzany J, Cejka T, Zigler R (2014) Failure mechanism of compressed short brick masonry columns confined with FRP strips. Constr Build Mater 63:180–188

    Article  Google Scholar 

  40. Zhang Y, Macorini L, Izzuddin BA (2016) Mesoscale partitioned analysis of brick-masonry arches. Eng Struct 124:142–166

    Article  Google Scholar 

Download references

Funding

This study was funded by ReLUIS (Italian Department of Civil Protection), MIUR-PRIN, University of Cassino and Southern Lazio and University of Rome Sapienza.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Addessi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Addessi, D., Sacco, E. Homogenization of heterogeneous masonry beams. Meccanica 53, 1699–1717 (2018). https://doi.org/10.1007/s11012-017-0758-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-017-0758-2

Keywords

Navigation