Skip to main content
Log in

Stasis domains and slip surfaces in the locomotion of a bio-inspired two-segment crawler

Meccanica Aims and scope Submit manuscript

Abstract

We formulate and solve the locomotion problem for a bio-inspired crawler consisting of two active elastic segments (i.e., capable of changing their rest lengths), resting on three supports providing directional frictional interactions. The problem consists in finding the motion produced by a given, slow actuation history. By focusing on the tensions in the elastic segments, we show that the evolution laws for the system are entirely analogous to the flow rules of elasto-plasticity. In particular, sliding of the supports and hence motion cannot occur when the tensions are in the interior of certain convex regions (stasis domains), while support sliding (and hence motion) can only take place when the tensions are on the boundary of such regions (slip surfaces). We solve the locomotion problem explicitly in a few interesting examples. In particular, we show that, for a suitable range of the friction parameters, specific choices of the actuation strategy can lead to net displacements also in the direction of higher friction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Arroyo M, Heltai L, Milan D, DeSimone A (2012) Reverse engineering the euglenoid movement. Proc Nat Acad Sci USA 109:17874–17879. doi:10.1073/pnas.1213977109

    Article  ADS  Google Scholar 

  2. Bolotnik N, Pivovarov M, Zeidis I, Zimmermann K (2015) On the motion of lumped-mass and distributed-mass self-propelling systems in a linear resistive environment. Z Angew Math Mech. doi:10.1002/zamm.201500091

  3. Borisenko IN, Figurina TYu, Chernousko FL (2014) The quasi-static motion of a three body system on a plane. J Appl Math Mech 78:220–227. doi:10.1016/j.jappmathmech.2014.09.003

    Article  MathSciNet  Google Scholar 

  4. DeSimone A, Tatone A (2012) Crawling motility through the analysis of model locomotors: two case studies. Eur Phys J E 35:85. doi:10.1140/epje/i2012-12085-x

    Article  Google Scholar 

  5. DeSimone A, Guarnieri F, Noselli G, Tatone A (2013) Crawlers in viscous environments: linear vs non-linear rheology. Int J Non-Linear Mech 56:142–147. doi:10.1016/j.ijnonlinmec.2013.02.007

    Article  Google Scholar 

  6. DeSimone A, Gidoni P, Noselli G (2015) Liquid crystal elastomer strips as soft crawlers. J Mech Phys Solids 85:254–272. doi:10.1016/j.jmps.2015.07.017

    Article  ADS  MathSciNet  Google Scholar 

  7. Gidoni P, Noselli G, DeSimone A (2014) Crawling on directional surfaces. Int J Non-Linear Mech 61:65–73. doi:10.1016/j.ijnonlinmec.2014.01.012

    Article  Google Scholar 

  8. Hirose S (1993) Biologically inspired robots: snake-like locomotors and manipulators. Oxford University Press, Oxford

    Google Scholar 

  9. Ikuta K, Hasegawa T, Daifu S (2003) Hyper redundant miniature manipulator Hyper Finger for remote minimally invasive surgery in deep area. In: Proceeding of IEEE International Conference on Robotics and Automation, Vol. 1, Taipei, pp 1098–1102

  10. Magnasco MO (1993) Forced thermal ratchets. Phys Rev Lett 71:1477–1481. doi:10.1103/PhysRevLett.71.1477

    Article  ADS  Google Scholar 

  11. Menciassi A, Dario P (2003) Bio-inspired solutions for locomotion in the gastrointestinal tract: background and perspectives. Phil Trans R Soc Lond A 361:2287–2298. doi:10.1098/rsta.2003.1255

    Article  ADS  MathSciNet  Google Scholar 

  12. Menciassi A, Accoto D, Gorini S, Dario P (2006) Development of a biomimetic miniature robotic crawler. Auton Robot 21:155–163. doi:10.1007/s10514-006-7846-9

    Article  Google Scholar 

  13. Mielke A, Theil F (2004) On rate-independent hysteresis models. NoDEA Nonlinear Differ Equ Appl 11(2):151–189. doi:10.1007/s00030-003-1052-7

    Article  MathSciNet  MATH  Google Scholar 

  14. Mielke A (2005) Evolution of rate-independent systems. In: Dafermos C, Feireisl E (eds) Handbook of Differential Equations, evolutionary equations. Elsevier, Amsterdam

    Google Scholar 

  15. Mielke A, Roubíček T (2015) Rate-independent systems. Theory and application. Springer, Berlin

    Book  MATH  Google Scholar 

  16. Montino A, DeSimone A (2015) Three-sphere low-Reynolds-number swimmer with a passive elastic arm. Eur Phys J E 38:42. doi:10.1140/epje/i2015-15042-3

    Article  Google Scholar 

  17. Noselli G, DeSimone A, Tatone A (2013) Discrete one-dimensional crawlers on viscous substrates: achievable net displacements and their energy cost. Mech Res Commun 58:73–81. doi:10.1016/j.mechrescom.2013.10.023

    Article  Google Scholar 

  18. Noselli G, DeSimone A (2014) A robotic crawler exploiting directional frictional interactions: experiments, numerics, and derivation of a reduced model. Proc Roy Soc Lond A 470:20140333. doi:10.1098/rspa.2014.0333

    Article  ADS  Google Scholar 

  19. Recho P, Truskinovsky L (2016) Maximum velocity of self-propulsion for an active segment. Math Mech Solids 21:263–278. doi:10.1177/1081286515588675

    Article  MathSciNet  MATH  Google Scholar 

  20. Sheshka R, Recho P, Truskinovsky L (2015) Pseudo energy wells in active systems. Preprint arXiv:1509.02753v1

  21. Steigenberger J, Behn C (2012) Worm-like locomotion systems. An intermediate theoretical approach. Oldenbourg Wissenschaftsverlag, Berlin

    Book  MATH  Google Scholar 

  22. Zimmermann K, Zeidis I, Behn C (2009) Mechanics of terrestrial locomotion. Springer, Berlin

    MATH  Google Scholar 

Download references

Acknowledgments

This work has been supported by the ERC Advanced Grant 340685-MicroMotility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio DeSimone.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gidoni, P., DeSimone, A. Stasis domains and slip surfaces in the locomotion of a bio-inspired two-segment crawler. Meccanica 52, 587–601 (2017). https://doi.org/10.1007/s11012-016-0408-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-016-0408-0

Keywords

Navigation