Skip to main content
Log in

Asymptotic analysis of a multimaterial with a thin piezoelectric interphase

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

We study the electromechanical behavior of a multimaterial constituted by a linear piezoelectric transversely isotropic plate-like body with high rigidity embedded between two generic three-dimensional piezoelectric bodies by means of the asymptotic expansion method. After defining a small real dimensionless parameter \(\varepsilon \), which will tend to zero, we characterize the limit model and the associated limit problem. We give also a mathematical justification of the model by means of a functional convergence argument. Moreover, we identify the non classical electromechanical transmission conditions between the two three-dimensional bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Benveniste Y (2012) Two models of three-dimensional thin interphases with variable conductivity and their fulfillment of the reciprocal theorem. J Mech Phys Solids 60(10):1740–1752

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Bernadou M, Haenel C (1999) Numerical analysis of piezoelectric shells. In: Fortin M (ed) Plates and Shells (Quebec 1996). CRM Proceedings & Lecture Notes, vol 21. American Mathematical Society, Providence, pp 55–63

    Google Scholar 

  3. Bessoud AL, Krasucki F, Serpilli M (2008) Plate-like and shell-like inclusions with high rigidity. C R Acad Sci Paris 346:697–702

    Article  MATH  MathSciNet  Google Scholar 

  4. Bessoud AL, Krasucki F, Michaille G (2009) Multi-materials with strong interface: variational modelings. Asymptot Anal 1:1–19

    MathSciNet  Google Scholar 

  5. Bessoud AL, Krasucki F, Serpilli M (2011) Asymptotic analysis of shell-like inclusions with high rigidity. J Elast 103:153–172

    Article  MATH  MathSciNet  Google Scholar 

  6. Chapelle D, Ferent A (2003) Modeling of the inclusion of a reinforcing sheet within a 3D medium. Math Models Methods Appl Sci 13:573–595

    Article  MATH  MathSciNet  Google Scholar 

  7. Ciarlet PG (1997) Mathematical elasticity: theory of plates. North-Holland, Amsterdam

    MATH  Google Scholar 

  8. Fernandes A, Pouget J (2002) An accurate modelling of piezoelectric multi-layer plates. Eur J Mech A 2:629–651

    Article  MathSciNet  Google Scholar 

  9. Geis W, Mishuris G, Sändig AM (2004) Asymptotic models for piezoelectric stack actuators with thin metal inclusions. Berichte aus dem Institut für Angewandte Analysis und Numerische, Simulation 2004/001

  10. Geymonat G, Hendili S, Krasucki F, Serpilli M, Vidrascu M (2012) Asymptotic expansions and domain decomposition. In: Proceedings of 21st international conference on domain decomposition methods, INRIA Rennes, France, 25–29 June 2012

  11. Geymonat G, Licht C, Weller T (2011) Plates made of piezoelectric materials: when are they really piezoelectric? Appl Math Model 35:165–173

    Article  MATH  MathSciNet  Google Scholar 

  12. Lebon F, Rizzoni R (2010) Asymptotic analysis of a thin interface: the case involving similar rigidity. Int J Eng Sci 48:473–486

    Article  MATH  MathSciNet  Google Scholar 

  13. Lebon F, Rizzoni R (2011) Asymptotic behavior of a hard thin linear interphase: an energy approach. Int J Solids Struct 48:441–449

    Article  MATH  Google Scholar 

  14. Miara B, Suàrez JS (2013) Asymptotic pyroelectricity and pyroelasticity in thermopiezoelectric plates. Asymptot Anal 81:211–250

    MATH  MathSciNet  Google Scholar 

  15. Raoult A, Sène A (2003) Modelling of piezoelectric plates including magnetic effects. Asymptot Anal 34:1–40

    MATH  MathSciNet  Google Scholar 

  16. Sabu N (2002) Vibrations of thin piezoelectric flexural shells: two dimensional approximation. J Elast 68:145–165

    Article  MATH  MathSciNet  Google Scholar 

  17. Sène A (2001) Modelling of piezoelectric static thin plates. Asymptot Anal 25:1–20

    MATH  MathSciNet  Google Scholar 

  18. Weller T, Licht C (2010) Asymptotic modeling of thin piezoelectric plates. Ann Solid Struct Mech 1:173–188

    Article  Google Scholar 

  19. Weller T, Licht C (2010) Mathematical modeling of piezomagnetoelectric thin plates. Eur J Mech A 29:928–937

    Article  MathSciNet  Google Scholar 

  20. Yang J (2005) An introduction to the theory of piezoelectricity. Springer, New York

    MATH  Google Scholar 

  21. Yoshikawa S (1993) Multilayer piezoelectric actuators—structures and reliability. American Institute of Aeronautics and Astronautics, Inc., technical papers, pp 3581–3586

Download references

Acknowledgments

The support of the Italian Ministry of Education, University and Research (MIUR) through the PRIN funded program 2010/11 N.2010MBJK5B Dynamics, stability and control of flexible structures is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Serpilli.

Appendix

Appendix

In the section we justify from mathematical point of view the obtained limit model through a variational convergence result. We prove that the solution of the physical problem strongly converges towards the solution of the limit model. The strong convergence corresponds to the convergence of the energies.

In the sequel we denote by \(\Vert \cdot \Vert _{s,\Omega }\) the norm of the Sobolev space \(H^s(\Omega ; \mathbb {R}^d)\) for all \(d\ge 1\) and \(|\cdot |_{0,\Omega }\) stands for the norm in \(L^2(\Omega ; \mathbb {R}^d)\). Obviously, the same holds in \(\Omega ^\pm \), \(\Omega ^m\) and \(\omega \).

To begin with, we introduce the following notation. We let

$$\begin{aligned} \begin{array}{ll} \mathbf{a} \cdot \mathbf{b}:=a_{i}b_{i},\ \ \ \ \mathbf{A} : \mathbf{B}:=a_{ij}b_{ij}, \end{array} \end{aligned}$$

for, respectively, all vectors \(\mathbf{a}=(a_{i})\) and \(\mathbf{b}=(b_{i})\), and for all symmetric second order matrices \(\mathbf{A}=(a_{ij})\) and \(\mathbf{B}=(b_{ij})\).

With the scaled electromechanical state \(s(\varepsilon )=({\mathbf {u}}(\varepsilon ), \varphi (\varepsilon ))\in V\times \Psi \), we associate, respectively, the following scaled strain tensor field \(\varvec{\kappa }(\varepsilon )=(\kappa _{ij}(\varepsilon ))\), with \(\kappa _{ij}(\varepsilon )\in L^2(\Omega )\), and the scaled electric potential vector field \(\varvec{\theta }(\varepsilon )=(\theta _i(\varepsilon ))\), with \(\theta _i(\varepsilon )\in L^2(\Omega )\), defined by

$$\begin{aligned} \begin{array}{ll} \kappa _{ij}^\pm (\varepsilon ):=e_{ij}({\mathbf {u}}^\pm (\varepsilon )),\ \ \theta ^\pm _i(\varepsilon ):=\partial _i\varphi ^\pm (\varepsilon )\\ \kappa _{\alpha \beta }^m(\varepsilon ):=e_{\alpha \beta }({\mathbf {u}}^m(\varepsilon )),\ \ \kappa ^m_{\alpha 3}(\varepsilon ):=\frac{1}{\varepsilon }e_{\alpha 3}({\mathbf {u}}^m(\varepsilon )),\ \ \kappa ^m_{33}(\varepsilon ):=\frac{1}{\varepsilon ^2}e_{33}({\mathbf {u}}^m(\varepsilon )),\\ \theta ^m_\alpha (\varepsilon ):=\varepsilon \partial _\alpha \varphi ^m(\varepsilon ),\ \ \theta ^m_3(\varepsilon ):=\partial _3\varphi ^m(\varepsilon ). \end{array} \end{aligned}$$

With an arbitrary electromechanical state \(r=({\mathbf {v}}, \psi )\in V\times \Psi \), we associate, respectively, the following tensor field \(\varvec{\kappa }(\varepsilon ;{\mathbf {v}})=(\kappa _{ij}(\varepsilon ;{\mathbf {v}}))\) and vector field \(\varvec{\theta }(\varepsilon ;\psi )=(\theta _i(\varepsilon ;\psi ))\). In particular, one has \(\varvec{\kappa }(\varepsilon )=\varvec{\kappa }(\varepsilon ;{\mathbf {u}}(\varepsilon ))\) and \(\varvec{\theta }(\varepsilon )=\varvec{\theta }(\varepsilon ;\varphi (\varepsilon ))\). Then the rescaled problem (2) can be rewritten in the following condensed form:

$$\begin{aligned} \left\{ \begin{array}{ll} \text {Find } s(\varepsilon )\in V\times \Psi \ \text { such\;that}\\ A^{-}(s(\varepsilon ),r)+A^{+}(s(\varepsilon ),r)+ A^{m} (s(\varepsilon ),r)=L(r),\quad \text {for\;all}\ \ r\in V\times \Psi , \end{array}\right. \end{aligned}$$
(7)

where the bilinear forms \(A^{\pm }\) and \(A^{m}\) are given by

$$\begin{aligned} A^{\pm }(s(\varepsilon ),r)&:=\int \limits _{\Omega ^{\pm }}\left\{ \mathsf A ^\pm \varvec{\kappa }^\pm (\varepsilon ):\varvec{\kappa }^\pm (\varepsilon ;{\mathbf {v}})+\mathsf H ^{\pm }\varvec{\theta }^\pm (\varepsilon )\cdot \varvec{\theta }^\pm (\varepsilon ;\psi )\right. \\&\quad \left. +\,\mathsf P ^{\pm } \varvec{\kappa }^\pm (\varepsilon ;{\mathbf {v}})\cdot \varvec{\theta }^\pm (\varepsilon )-\mathsf P ^{\pm } \varvec{\kappa }^\pm (\varepsilon )\cdot \varvec{\theta }^\pm (\varepsilon ;\psi )\right\} dx,\\ A^{m}(s(\varepsilon ),r)&:=\int \limits _{\Omega ^{m}}\left\{ \mathsf A ^m \varvec{\kappa }^m(\varepsilon ):\varvec{\kappa }^m(\varepsilon ;{\mathbf {v}})+\mathsf H ^{m}\varvec{\theta }^m(\varepsilon )\cdot \varvec{\theta }^m(\varepsilon ;\psi )\right. \\&\quad \left. +\,\mathsf P ^{m} \varvec{\kappa }^m(\varepsilon ;{\mathbf {v}})\cdot \varvec{\theta }^m(\varepsilon )-\mathsf P ^{m} \varvec{\kappa }^m(\varepsilon )\cdot \varvec{\theta }^m(\varepsilon ;\psi )\right\} dx. \end{aligned}$$

\(\mathsf A =(A_{ijk\ell })\), \(\mathsf P =(P_{ijk})\) and \(\mathsf H =(H_{ij})\) represent, respectively, the elasticity tensor, the coupling tensor and the dielectric tensor.

The strong convergence result is stated in the following theorem.

Theorem 4

The sequence \((s(\varepsilon ))_{\varepsilon >0}=({\mathbf {u}}(\varepsilon ), \varphi (\varepsilon ))_{\varepsilon >0}\) strongly converges to \(s^0=({\mathbf {u}}^0, \varphi ^0)\) in \(H^1(\Omega ,\mathbb {R}^3)\times L^2(\Omega )\), the unique solution of (4).

Proof

For convenience, the proof is divided into three steps, numbered from (i) to (iii).

  1. (i)

    By letting \(r=s(\varepsilon )\), i.e., \({\mathbf {v}}={\mathbf {u}}(\varepsilon )\) and \(\psi =\varphi (\varepsilon )\), the rescaled problem (7) becomes, as customary,

    $$\begin{aligned} \begin{array}{ll} &\int \limits _{\Omega ^{\pm }}\left\{ \mathsf A ^\pm \varvec{\kappa }^\pm (\varepsilon ):\varvec{\kappa }^\pm (\varepsilon )+\mathsf H ^{\pm }\varvec{\theta }^\pm (\varepsilon )\cdot \varvec{\theta }^\pm (\varepsilon )\right\} dx\\ &\quad +\,\int \limits _{\Omega ^{m}}\left\{ \mathsf A ^m \varvec{\kappa }^m(\varepsilon ):\varvec{\kappa }^m(\varepsilon )+\mathsf H ^{m}\varvec{\theta }^m(\varepsilon )\cdot \varvec{\theta }^m(\varepsilon )\right\} dx=L(s(\varepsilon )). \end{array} \end{aligned}$$

    By virtue of the positive definiteness of \(\mathsf A \) and \(\mathsf H \) and by means of the Korn’s inequality and the Poincaré’s inequality, we derive that

    $$\begin{aligned} \begin{array}{ll} &\int \limits _{\Omega ^{\pm }}\left\{ \mathsf A ^\pm \varvec{\kappa }^\pm (\varepsilon ):\varvec{\kappa }^\pm (\varepsilon )+\mathsf H ^{\pm }\varvec{\theta }^\pm (\varepsilon )\cdot \varvec{\theta }^\pm (\varepsilon )\right\} dx\\ &\quad +\,\int \limits _{\Omega ^{m}}\left\{ \mathsf A ^m \varvec{\kappa }^m(\varepsilon ):\varvec{\kappa }^m(\varepsilon )+\mathsf H ^{m}\varvec{\theta }^m(\varepsilon )\cdot \varvec{\theta }^m(\varepsilon )\right\} dx\\ &\ge C\left\{ |\varvec{\kappa }^\pm (\varepsilon )|^2_{0,\Omega ^\pm }+|\varvec{\theta }^\pm (\varepsilon )|^2_{0,\Omega ^\pm }+|\varvec{\kappa }^m(\varepsilon )|^2_{0,\Omega ^m}+|\varvec{\theta }^m(\varepsilon )|^2_{0,\Omega ^m}\right\} \\ &\ge C\left\{ |\varvec{\kappa }^\pm (\varepsilon )|^2_{0,\Omega ^\pm }+|\varvec{\theta }^\pm (\varepsilon )|^2_{0,\Omega ^\pm }+ \sum \limits _{\alpha ,\beta }|e_{\alpha \beta }({\mathbf {u}}(\varepsilon ))|^2_{0,\Omega ^m}+\frac{1}{\varepsilon ^2} \sum \limits _{\alpha }|e_{\alpha 3}({\mathbf {u}}(\varepsilon ))|^2_{0,\Omega ^m}\right. \\ &\quad \left. +\,\frac{1}{\varepsilon ^4}|e_{33}({\mathbf {u}}(\varepsilon ))|^2_{0,\Omega ^m}+\varepsilon ^2 \sum \limits _{\alpha }|\partial _\alpha \varphi (\varepsilon )|^2_{0,\Omega ^m}+|\partial _3 \varphi (\varepsilon )|^2_{0,\Omega ^m}\right\} \\ &\ge \Bigg\{ \Vert {\mathbf {u}}(\varepsilon )\Vert ^2_{1,\Omega ^\pm }+|\varphi (\varepsilon )|^2_{0,\Omega ^\pm }+ \Vert {\mathbf {u}}(\varepsilon )\Vert ^2_{1,\Omega ^m}+\varepsilon ^2 \sum \limits _{\alpha }|\partial _\alpha \varphi (\varepsilon )|^2_{0,\Omega ^m}+|\partial _3 \varphi (\varepsilon )|^2_{0,\Omega ^m}\Bigg\} . \end{array} \end{aligned}$$

    On the other side, by virtue of the continuity of the linear form, one has:

    $$\begin{aligned} \begin{array}{ll} L(s(\varepsilon )) &\le C\left\{ \Vert {\mathbf {u}}(\varepsilon )\Vert _{1,\Omega ^\pm }+|\varphi (\varepsilon )|_{0,\Omega ^\pm }\right\} \\ &\le \left\{ \Vert {\mathbf {u}}(\varepsilon )\Vert ^2_{1,\Omega ^\pm }+|\varphi (\varepsilon )|^2_{0,\Omega ^\pm }+ \Vert {\mathbf {u}}(\varepsilon )\Vert ^2_{1,\Omega ^m}+\varepsilon ^2 \sum \limits _{\alpha }|\partial _\alpha \varphi (\varepsilon )|^2_{0,\Omega ^m}+|\partial _3 \varphi (\varepsilon )|^2_{0,\Omega ^m}\right\} ^{1/2}. \end{array} \end{aligned}$$

    The inequalities above imply that the norms \(|\varvec{\kappa }^\pm (\varepsilon )|_{0,\Omega ^\pm }\), \(|\varvec{\theta }^\pm (\varepsilon )|_{0,\Omega ^\pm }\), \(|\varvec{\kappa }^m(\varepsilon )|_{0,\Omega ^m}\) and \(|\varvec{\theta }^m(\varepsilon )|_{0,\Omega ^m}\) are bounded independently of \(\varepsilon \) in \(L^2(\Omega )\). This means that \(\kappa _{ij}^\pm (\varepsilon )\rightharpoonup \kappa _{ij}^\pm \) in \(L^2(\Omega ^\pm )\), \(\theta _i^\pm (\varepsilon )\rightharpoonup \theta _i^\pm \) in \(L^2(\Omega ^\pm )\), \(\kappa _{ij}^m(\varepsilon )\rightharpoonup \kappa _{ij}^m\) in \(L^2(\Omega ^m)\) and \(\theta _i^m(\varepsilon )\rightharpoonup \theta _i^m\) in \(L^2(\Omega ^m)\). Moreover, the norms \(\Vert {\mathbf {u}}(\varepsilon )\Vert _{1,\Omega ^\pm }\), \(|\varphi (\varepsilon )|_{0,\Omega ^\pm }\) and \(\Vert {\mathbf {u}}(\varepsilon )\Vert _{1,\Omega ^m}\) are also bounded. Then, from definition of \(\kappa _{ij}(\varepsilon )\) and \(\theta _i(\varepsilon )\), there exists a constant \(c\) such that

    $$\begin{aligned} \begin{array}{ll} |e_{ij}({\mathbf {u}}(\varepsilon ))|_{0,\Omega ^\pm }\le c, & \Vert {\mathbf {u}}^\pm (\varepsilon )\Vert _{1,\Omega ^\pm }\le c ,\\ |\partial _i\varphi ^\pm (\varepsilon )|_{0,\Omega ^\pm }\le c, & |\varphi ^\pm (\varepsilon )|_{0,\Omega ^\pm }\le c, \end{array} \end{aligned}$$
    (8)

    and, also,

    $$\begin{aligned} \begin{array}{ll} |e_{\alpha \beta }({\mathbf {u}}(\varepsilon ))|_{0,\Omega ^m}\le c, & |e_{\alpha 3}({\mathbf {u}}(\varepsilon ))|_{0,\Omega ^m}\le c\varepsilon ,\\ |e_{33}({\mathbf {u}}(\varepsilon ))|_{0,\Omega ^m}\le c\varepsilon ^2, & \Vert {\mathbf {u}}(\varepsilon )\Vert _{1,\Omega ^m}\le c, \\ |\partial _\alpha \varphi ^m(\varepsilon )|_{0,\Omega ^m}\le \frac{c}{\varepsilon }, & |\partial _3\varphi ^m(\varepsilon )|_{0,\Omega ^m}\le c. \end{array} \end{aligned}$$
    (9)

    From the first set of inequalities (8), we obtain that \({\mathbf {u}}^\pm (\varepsilon )\rightharpoonup {\mathbf {u}}^\pm \) in \(H^1(\Omega ^\pm ;\mathbb {R}^3)\) and, consequently, \(e_{ij}({\mathbf {u}}(\varepsilon ))\rightharpoonup e_{ij}({\mathbf {u}}^\pm )\) in \(L^2(\Omega ^\pm )\), i.e., \(\kappa ^\pm = e_{ij}({\mathbf {u}}^\pm )\); besides, since both \(|\partial _i\varphi ^\pm (\varepsilon )|_{0,\Omega ^\pm }\) and \(|\varphi ^\pm (\varepsilon )|_{0,\Omega ^\pm }\) are bounded in \(L^2(\Omega ^\pm )\), we have that \(\varphi ^\pm (\varepsilon ) \rightharpoonup \varphi ^\pm \) in \(H^1(\Omega ^\pm )\).

    From the second set of inequalities (9), we get that \({\mathbf {u}}^m (\varepsilon ) \rightharpoonup {\mathbf {u}}^m\) in \(H^1(\Omega ^m;\mathbb {R}^3)\) and \(e_{i3}({\mathbf {u}}(\varepsilon ))\rightarrow 0\) in \(L^2(\Omega ^m)\). This implies that \(\partial _3 u^m_3(\varepsilon )\rightarrow 0\) and, thus, by continuity of the derivative operator, we obtain that \(\partial _3 u^m_3=0\), i.e., \(u^m_3(\tilde{x},x_3)=u^m_3(\tilde{x})\) is independent of \(x_3\). We also have that \(\partial _3 u^m_\alpha (\varepsilon )+\partial _\alpha u_3^m(\varepsilon )\rightarrow 0\), meaning that \(\partial _3 u^m_\alpha =-\partial _\alpha u_3^m\), i.e., \(u^m_\alpha (\tilde{x},x_3)=\bar{u}^m_\alpha (\tilde{x})-x_3\partial _\alpha u_3^m(\tilde{x})\). Consequently, \({\mathbf {u}}^m \in V_{KL}\). Moreover, we obtain that \(e_{\alpha \beta }({\mathbf {u}}(\varepsilon )) \rightharpoonup e_{\alpha \beta }({\mathbf {u}}^m)\) in \(L^2(\Omega ^m)\), \(e_{\alpha 3}(\frac{{\mathbf {u}}(\varepsilon )}{\varepsilon }) \rightharpoonup \kappa ^m_{\alpha 3}\) in \(L^2(\Omega ^m)\), \(e_{33}(\frac{{\mathbf {u}}(\varepsilon )}{\varepsilon }) \rightarrow 0\) in \(L^2(\Omega ^m)\) and also \(e_{33}(\frac{{\mathbf {u}}(\varepsilon )}{\varepsilon ^2}) \rightharpoonup \kappa ^m_{33}\) in \(L^2(\Omega ^m)\).

    As already shown, the vector \(\varvec{\theta }^m(\varepsilon ):=(\varepsilon \partial _1 \varphi ^m(\varepsilon ), \varepsilon \partial _2 \varphi ^m(\varepsilon ), \partial _3 \varphi ^m(\varepsilon )) \rightharpoonup (\theta ^m_1,\theta ^m_2, \theta ^m_3)\) in \(L^2(\Omega ^m;\mathbb {R}^3)\). Thanks to the \(H^1\)-boundedness of the sequences \((\varphi ^\pm (\varepsilon ))_{\varepsilon >0}\) and by virtue of the continuity of the trace operator, from expression

    $$\begin{aligned} \varphi ^m(\varepsilon )(\tilde{x}, x_3)=\varphi ^m(\varepsilon )|_{S^-}+\int \limits _{-h}^{x_3} \partial _3 \varphi ^m(\varepsilon )(\tilde{x},\xi )d\xi , \end{aligned}$$

    it follows that there exist two constants, \(c_1\) and \(c_2\), such that \(|\varphi ^m(\varepsilon )|_{0,\Omega ^m}\le c_1\{|\varphi ^-(\varepsilon )|_{0,S^-}+|\partial _3\varphi ^m(\varepsilon )|_{0,\Omega ^m}\}\le c_2\). This implies that \(\varphi ^m(\varepsilon )\rightharpoonup \varphi ^m\) in \(L^2(\Omega ^m)\) and, thus, \((\varepsilon \partial _1 \varphi ^m(\varepsilon ), \varepsilon \partial _2 \varphi ^m(\varepsilon ), \partial _3 \varphi ^m(\varepsilon ))\rightharpoonup (0, 0,\partial _3 \varphi ^m)\).

    Hence, the weak limit \(({\mathbf {u}}, \varphi )\) belongs to \(\widetilde{V}\times \widetilde{\Psi }\).

  2. (ii)

    Now we characterize the expression of the weak limit. Let us multiply the rescaled problem (7) by \(\varepsilon ^2\) and let \(\varepsilon \) tends to zero. If we choose \(\psi =0\), we find that

    $$\begin{aligned} \int \limits _{\Omega ^m} \left( \tau _1\kappa ^m_{33}+\tau _2e_{\sigma \sigma }({\mathbf {u}}^m)+\delta _3\partial _3\varphi ^m\right) e_{33}({\mathbf {v}})dx=0, \end{aligned}$$

    for all \({\mathbf {v}}\in V\), which is satisfied when \(\kappa ^m_{33}=-\frac{1}{\tau _1}(\tau _2e_{\sigma \sigma }({\mathbf {u}}^m)+\delta _3\partial _3\varphi ^m)\) in \(L^2(\Omega ^m)\). By multiplying by \(\varepsilon \) and by choosing test functions such that \(v_3=\psi =0\), we obtain

    $$\begin{aligned} \int \limits _{\Omega ^m}2\eta \kappa ^m_{\alpha 3}\partial _3 v_\alpha dx=0, \end{aligned}$$

    for all \(v_\alpha \in V\), which implies that \( \kappa ^m_{\alpha 3}=0\) and, thus, \(e_{\alpha 3}(\frac{{\mathbf {u}}(\varepsilon )}{\varepsilon }) \rightarrow 0\) in \(L^2(\Omega ^m)\). Let us choose test functions \(r\in \widetilde{V}\times \widetilde{\Psi }\) in the rescaled problem (7) and let \(\varepsilon \) tends to zero. We get

    $$\begin{aligned} \begin{array}{ll} A^\pm (s,r)&+\int \limits _{\Omega ^m} \left\{ 2\mu e_{\alpha \beta }({\mathbf {u}}^m)e_{\alpha \beta }({\mathbf {v}})+(\lambda e_{\sigma \sigma }({\mathbf {u}}^m)+\,\delta _1\partial _3\varphi ^m+\tau _2\kappa ^m_{33})e_{\tau \tau }({\mathbf {v}})\right. \\ &\quad +\,\left. (-\delta _1e_{\sigma \sigma }({\mathbf {u}}^m)+\,\gamma _2 \partial _3\varphi ^m-\delta _3 \kappa ^m_{33})\partial _3\psi \right\} =L(r). \end{array} \end{aligned}$$

    By means of the expression of \(\kappa ^m_{33}\), we obtain, as customary, the limit problem (4) and, hence, we can identify the weak limit with the limit electromechanical state \(s^0=({\mathbf {u}}^0, \varphi ^0)\). Besides, by integrating by parts we can obtain the same characterization (5) for \(\varphi ^m\), already shown in Sect. 3, which means that \(\varphi ^m\in H^1(-h,h;L^2(\omega ))\). Since the variational equation (4) has a unique solution, not only a subsequence but the whole family \((s(\varepsilon ))_{\varepsilon >0}=({\mathbf {u}}(\varepsilon ),\varphi (\varepsilon ))_{\varepsilon >0}\) weakly converges to \(s^0=({\mathbf {u}}^0, \varphi ^0)\) in \(H^1(\Omega ,\mathbb {R}^3)\times L^2(\Omega )\).

  3. (iii)

    To show that \((s(\varepsilon ))_{\varepsilon >0}=({\mathbf {u}}(\varepsilon ),\varphi (\varepsilon ))_{\varepsilon >0}\) strongly converges to \(s^0=({\mathbf {u}}^0, \varphi ^0)\) in \(H^1(\Omega ,\mathbb {R}^3)\times L^2(\Omega )\), it suffices to show that both \((\kappa _{ij}(\varepsilon ))_{\varepsilon >0}=(e_{ij}({\mathbf {u}}(\varepsilon )))_{\varepsilon >0}\) and \((\theta _i(\varepsilon ))_{\varepsilon >0}=\partial _i\varphi (\varepsilon ))_{\varepsilon >0}\), respectively, strongly converges to \(\kappa _{ij}=e_{ij}({\mathbf {u}})\) and \(\theta _i=\partial _i\varphi \) in \(L^2(\Omega )\), as a consequence of Korn’s and Poincaré’s inequalities with boundary conditions. Using the variational problem (7), we infer that

    $$\begin{aligned} &c\Big\{ |\varvec{\kappa }^\pm (\varepsilon )-\varvec{\kappa }^\pm |^2_{0,\Omega ^\pm }+|\varvec{\theta }^\pm (\varepsilon )-\varvec{\theta }^\pm |^2_{0,\Omega ^\pm }\\&\quad+|\varvec{\kappa }^m(\varepsilon)-\varvec{\kappa }^m|^2_{0,\Omega ^m}+|\varvec{\theta }^m(\varepsilon )-\varvec{\theta }^m|^2_{0,\Omega ^m}\Big\}\\&\le \int \limits _{\Omega ^{\pm }}\Big\{ \mathsf A ^\pm ( \varvec{\kappa }^\pm (\varepsilon )-\varvec{\kappa }^\pm ):(\varvec{\kappa }^\pm (\varepsilon )-\varvec{\kappa }^\pm )\\&\quad+\,\mathsf H ^{\pm }(\varvec{\theta }^\pm (\varepsilon )-\varvec{\theta }^\pm )\cdot (\varvec{\theta }^\pm (\varepsilon )-\varvec{\theta }^\pm )\Big\} dx\\ &\quad +\,\int \limits _{\Omega ^{m}}\Big\{ \mathsf A ^m (\varvec{\kappa }^m(\varepsilon )-\varvec{\kappa }^m):(\varvec{\kappa }^m(\varepsilon )-\varvec{\kappa }^m)\\&\quad+\mathsf H ^{m}(\varvec{\theta }^m(\varepsilon )-\varvec{\theta }^m)\cdot (\varvec{\theta }^m(\varepsilon )-\varvec{\theta }^m)\Big\} dx\\ &=\,\int \limits _{\Omega ^{\pm }}\Big\{ \mathsf A ^\pm \varvec{\kappa }^\pm :(\varvec{\kappa }^\pm -2\varvec{\kappa }^\pm (\varepsilon ))\\&\quad+\mathsf H ^{\pm }\varvec{\theta }^\pm\cdot (\varvec{\theta }^\pm -2\varvec{\theta }^\pm (\varepsilon ))\Big\} dx+L(s(\varepsilon ))\\ &\quad +\,\int \limits _{\Omega ^{m}}\Big\{ \mathsf A ^m \varvec{\kappa }^m:(\varvec{\kappa }^m-2\varvec{\kappa }^m(\varepsilon ))\\&\quad+\mathsf H ^{m}\varvec{\theta }^m\cdot (\varvec{\theta }^m-2\varvec{\theta }^m(\varepsilon ))\Big\} dx. \end{aligned}$$

    Since we already established in part (i) and (ii) the weak convergences

    $$\begin{aligned} \begin{array}{ll} \kappa _{ij}^\pm (\varepsilon )\rightharpoonup \kappa _{ij}^\pm ,\ \ \ \theta _i^\pm (\varepsilon )\rightharpoonup \theta _i^\pm \ \text {in}\ L^2(\Omega ^\pm ),\\ \kappa _{ij}^m(\varepsilon )\rightharpoonup \kappa _{ij}^m,\ \ \ \theta _i^m(\varepsilon )\rightharpoonup \theta _i^m\ \text {in}\ L^2(\Omega ^m), \end{array} \end{aligned}$$

    the right-hand side of the last inequality converges to

    $$\begin{aligned} \begin{array}{ll} \Lambda &:=- \int \limits _{\Omega ^{\pm }}\left\{ \mathsf A ^\pm \varvec{\kappa }^\pm :\varvec{\kappa }^\pm +\mathsf H ^{\pm }\varvec{\theta }^\pm \cdot \varvec{\theta }^\pm \right\} dx\\ &\quad -\int \limits _{\Omega ^{m}}\left\{ \mathsf A ^m \varvec{\kappa }^m:\varvec{\kappa }^m+\mathsf H ^{m}\varvec{\theta }^m\cdot \varvec{\theta }^m\right\} dx+L(s) \end{array} \end{aligned}$$

    as \(\varepsilon \) tends to zero. From relations \(\kappa ^\pm _{ij}=e_{ij}({\mathbf {u}}^\pm )\), \(\theta _i^\pm =\partial _i\varphi ^\pm \), \(\kappa ^m_{\alpha \beta }=e_{\alpha \beta }({\mathbf {u}}^m)\), \(\kappa ^m_{\alpha 3}=0\), \(\kappa ^m_{33}=-\frac{1}{\tau _1}(\tau _2e_{\sigma \sigma }({\mathbf {u}}^m)+\delta _3\partial _3\varphi ^m)\), \(\theta ^m_\alpha =0\) and \(\theta ^m_3=\partial _3\varphi ^m\), we obtain that

    $$\begin{aligned} &\int \limits _{\Omega ^{\pm }}\left\{ \mathsf A ^\pm \varvec{\kappa }^\pm :\varvec{\kappa }^\pm +\mathsf H ^{\pm }\varvec{\theta }^\pm \cdot \varvec{\theta }^\pm \right\} dx\\&\quad+\int \limits _{\Omega ^{m}}\left\{ \mathsf A ^m \varvec{\kappa }^m:\varvec{\kappa }^m+\mathsf H ^{m}\varvec{\theta }^m\cdot \varvec{\theta }^m\right\} \\ &= \int \limits _{\Omega ^{\pm }}\left\{ A^\pm _{ijk\ell } e_{k\ell }({\mathbf {u}}^\pm )e_{ij}({\mathbf {u}}^\pm )+H^\pm _{ij}\partial _j \varphi ^\pm \partial _i \varphi ^\pm \right\} dx\\ &\quad +\,\int \limits _{\Omega ^{m}}\Big\{ 2\mu e_{\alpha \beta }({\mathbf {u}}^m)e_{\alpha \beta }({\mathbf {u}}^m)+\mathcal {B}e_{\sigma \sigma }({\mathbf {u}}^m)e_{\tau \tau }({\mathbf {u}}^m)\\&\quad+\,\mathcal {D}\partial _3\varphi ^m\partial _3\varphi ^m\big\} dx\\ &= L(s) \end{aligned}$$

    by step (ii). Hence \(\Lambda =0\), as was to be proved.

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serpilli, M. Asymptotic analysis of a multimaterial with a thin piezoelectric interphase. Meccanica 49, 1641–1652 (2014). https://doi.org/10.1007/s11012-014-9936-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-014-9936-7

Keywords

Mathematics Subject Classification

Navigation