Skip to main content
Log in

Transverse free vibration of non uniform rotating Timoshenko beams with elastically clamped boundary conditions

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In the present paper the Differential Quadrature Method, DQM, and the domain decomposition are used to carry out the free transverse vibration analysis of non-uniform multi-span rotating Timoshenko beams with perfect and not perfect boundary conditions. The cross section could vary in a continuous or discontinuous fashion along the beam length. The material of the beam could be different in each beam span. The influence of elastically clamped boundary conditions at hub end are studied and discussed. The effect of an arbitrary hub radius is considered. The governing differential equations of motion for rotating Timoshenko beams come from the derivation of Hamilton’s principle. The first six natural frequencies of vibration are obtained for many particular situations and for some of them the mode shapes are also available. The examples of applications of the method indicated its effectiveness. The results for particular cases are in excellent agreement with published results and results obtained by means of the finite element method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Hodges DH, Rutkowoski MJ (1981) Free vibration analysis of rotating beams by a variable order finite element method. AIAA J 19:1459–1466

    Article  ADS  MATH  Google Scholar 

  2. Naguleswaran S (2004) Transverse vibration of an uniform Euler–Bernoulli beam under linearly varying axial force. J Sound Vib 275:47–57

    Article  ADS  MATH  Google Scholar 

  3. Banerjee JR (2000) Free vibration of centrifugally stiffened uniform and tapered beams using the dynamic stiffness method. J Sound Vib 233:857–875

    Article  ADS  MATH  Google Scholar 

  4. Banerjee JR, Su H, Jackson DR (2006) Free vibration of rotating tapered beams using the dynamic stiffness method. J Sound Vib 298:1034–1054

    Article  ADS  Google Scholar 

  5. Wang G, Wereley NM (2004) Free vibration analysis of rotating blades with uniform tapers. AIAA J 42(12):2429–2437

    Article  ADS  Google Scholar 

  6. Özdemir Ö, Kaya MO (2006) Flapwise bending vibration analysis of double tapered rotating Euler–Bernoulli beam by using the differential transform method. Meccanica 41(6):661–670

    Article  Google Scholar 

  7. Gunda JB, Ganguli R (2008) New rational interpolation functions for finite element analysis of rotating beams. Int J Mech Sci 50:578–588

    Article  MATH  Google Scholar 

  8. Banerjee JR (2001) Dynamic stiffness formulation and free vibration analysis of centrifugally stiffened Timoshenko beams. J Sound Vib 247:97–115

    Article  ADS  Google Scholar 

  9. Özdemir Ö, Kaya MO (2010) Vibration analysis of rotating tapered Timoshenko beam using DTM. Meccanica 45:33–42

    Article  Google Scholar 

  10. Kumar A, Ganguli R (2009) Rotating beams and non rotating beams with shared eigenpair. J Appl Mech 76(5):1–14

    Article  Google Scholar 

  11. Ganesh R, Ganguli R (2011) Physics based basis function for vibration analysis of high speed rotating beams. Struct Eng Mech 39:21–46

    Article  Google Scholar 

  12. Attarnejad R, Shahba A (2011) Dynamic basic displacement functions in free vibration analysis of centrifugally stiffened tapered beams; a mechanical solution. Meccanica 46(6):1267–1281

    Article  MathSciNet  Google Scholar 

  13. Allahverdizadeh A, Mahjoob MJ, Eshraghi I, Asgharifard-S P (2012) Effects of electrorheological fluid core and functionally graded layers on the vibration behavior of a rotating composite beam. Meccanica 47(8):1945–1960

    Article  MathSciNet  Google Scholar 

  14. Laura PAA, Gutiérrez RH (1993) Analysis of vibrating Timoshenko beams using the differential quadrature method. Shock Vib 1:89–93

    Google Scholar 

  15. Bert CW, Malik M (1996) Differential quadrature method in computational mechanics. A review. Appl Mech Rev 49:1–27

    Article  ADS  Google Scholar 

  16. Karami G, Malekzadeh P (2002) A new differential quadrature methodology for beam analysis and the associated DQEM. Comput Methods Appl Mech Eng 191:3509–3525

    Article  ADS  MATH  Google Scholar 

  17. Karami G, Malekzadeh P, Shahpari SA (2003) A DQEM for vibration of shear deformable non-uniform beams with general boundary conditions. Eng Struct 25:1169–1178

    Article  Google Scholar 

  18. Liu GR, Wu TY (2001) Vibration analysis of beams using the generalized differential quadrature rule and domain decomposition. J Sound Vib 246:461–481

    Article  ADS  Google Scholar 

  19. Felix DH, Bambill DV, Rossi RE (2009) Análisis de vibración libre de una viga Timoshenko escalonada centrífugamente rigidizada mediante el método de quadratura diferencial. Rev Inte Mét Num Cálc Dis Ing 25:111–132

    MathSciNet  MATH  Google Scholar 

  20. Bambill DV, Felix DH, Rossi RE (2010) Vibration analysis of rotating Timoshenko beams of means of the differential quadrature method. Struct Eng Mech 34(2):231–245

    Google Scholar 

  21. Bambill DV, Felix DH, Rossi RE, Ratazzi AR (2011) Free vibration analysis of centrifugally stiffened non uniform Timoshenko beams. In: Gokcek M (ed) Mechanical engineering, ISBN: 978-953-51-0505-3. Available from: http://www.intechopen.com/books/mechanical-engineering/free-vibration-analysis-of-centrifugally-stiffened-non-uniform-timoshenko-beams

    Google Scholar 

  22. Zong Z, Zhang YY (2009) Advanced differential quadrature methods. CRC Press, New York

    Book  MATH  Google Scholar 

  23. Stephen NG (2002) On “A check on the accuracy of Timoshenko’s beam theory”. J Sound Vib 257(4):809–812

    Article  ADS  Google Scholar 

  24. Rossi RE (2007) Introducción al análisis de vibraciones con el método de elementos finitos, ISBN: 978-987-1171-71-2. EdiUNS, Universidad Nacional del Sur, Bahía Blanca, Argentina

    Google Scholar 

  25. Weaver W, Timoshenko SP, Young DH (2011) Vibration problems in engineering. Oxford University Press, London

    Google Scholar 

  26. Wolfram S (2012) Mathematica 8

Download references

Acknowledgements

The authors wish to express their gratitude to the Universidad Nacional del Sur and the Consejo Nacional de Investigaciones Científicas y Técnicas for the financial support which enable this work to be conducted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Bambill.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bambill, D.V., Rossit, C.A., Rossi, R.E. et al. Transverse free vibration of non uniform rotating Timoshenko beams with elastically clamped boundary conditions. Meccanica 48, 1289–1311 (2013). https://doi.org/10.1007/s11012-012-9668-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-012-9668-5

Keywords

Navigation