Skip to main content
Log in

Oblique stagnation slip flow of a micropolar fluid

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

This paper considers the problem of steady two-dimensional boundary layer flow of a micropolar fluid near an oblique stagnation point on a fixed surface with Navier’s slip condition. It is shown that the governing nonlinear partial differential equations admit similarity solutions. The resulting nonlinear ordinary differential equations are solved numerically using the Keller box method for some values of the governing parameters. It is found that the flow characteristics depend strongly on the micropolar and slip parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

Strength of the irrotational stagnation-point flow

A :

Constant in (19) and (23)

A t :

Slip constant

b :

Strain rate of the uniform shear flow

C1,C2:

Constants of integration

K :

Micropolar material parameter

l :

Characteristic length

n :

Ratio of the microrotation vector component and the fluid skin friction at the wall (or wall shear stress)

N :

Component of the microrotation vector normal to xy plane

p :

Pressure

U 0 :

Characteristic velocity

u,v:

Velocity components along x- and y-axes

x s :

Point of zero wall shear stress

x,y:

Cartesian coordinates along the plate and normal to it, respectively

α :

Shear flow parameter

γ :

Velocity slip factor

κ :

Vortex viscosity

μ :

Dynamic viscosity

ρ :

Density

υ :

Kinematic viscosity

ψ :

Stream function

τ :

Wall shear stress

–:

Dimensional variables

e :

Far field condition

w :

Wall condition

References

  1. Eringen AC (1966) Theory of micropolar fluids. J Math Mech 16:1–18

    MathSciNet  Google Scholar 

  2. Eringen AC (1972) Theory of thermomicrofluids. J Math Anal Appl 38:480–496

    Article  MATH  Google Scholar 

  3. Łukaszewicz G (1999) Micropolar fluids: theory and application. Birkhäuser, Basel

    MATH  Google Scholar 

  4. Eringen AC (2001) Microcontinuum field theories. II: Fluent media. Springer, New York

    MATH  Google Scholar 

  5. Peddieson J, McNitt RP (1970) Boundary layer theory for a micropolar fluid. Recent Adv Eng Sci 5:405–426

    Google Scholar 

  6. Ebert F (1973) A similarity solution for the boundary layer flow of a polar fluid. Chem Eng J 5:85–92

    Article  Google Scholar 

  7. Hiemenz K (1911) Die Grenzschicht an einem in den gleichförmigen Flüssigkeitsstrom eingetauchten geraden Kreiszylinder. Dinglers Polytech J 326:321–324

    Google Scholar 

  8. Stuart JT (1959) The viscous flow near a stagnation point when the external flow has uniform vorticity. J Aerospace Sci 26:124–125

    Google Scholar 

  9. Tamada KJ (1979) Two-dimensional stagnation point flow impinging obliquely on a plane wall. J Phys Soc Jpn 46:310–311

    Article  ADS  Google Scholar 

  10. Dorrepaal JM (1986) An exact solution of the Navier-Stokes equation which describes non-orthogonal stagnation-point flow in two dimensions. J Fluid Mech 163:141–147

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Dorrepaal JM (2000) Is two-dimensional oblique stagnation-point flow unique? Can Appl Math Q 8:61–66

    Article  MATH  MathSciNet  Google Scholar 

  12. Labropulu F, Dorrepaal JM, Chandna OP (1996) Oblique flow impinging on a wall with suction or blowing. Acta Mech 115:15–25

    Article  MATH  Google Scholar 

  13. Amaouche M, Boukari D (2003) Influence of thermal convection on non-orthogonal stagnation point flow. Int J Therm Sci 42:303–310

    Article  Google Scholar 

  14. Tilley BS, Weidman PD (1998) Oblique two-fluid stagnation-point flow. Eur J Mech B, Fluids 17:205–217

    Article  MATH  MathSciNet  Google Scholar 

  15. Weidman PD, Putkaradze V (2003) Axisymmetric stagnation flow obliquely impinging on a circular cylinder. Eur J Mech B, Fluids 22:123–131

    Article  Google Scholar 

  16. Lok YY, Pop I, Chamkha Ali J (2007) Non-orthogonal stagnation-point flow of a micropolar fluid. Int J Eng Sci 45:173–184

    Article  Google Scholar 

  17. Andersson HI (2002) Slip flow past a stretching surface. Acta Mech 158:121–125

    Article  MATH  Google Scholar 

  18. Wang CY (2003) Stagnation flows with slip: Exact solutions of the Navier-Stokes equations. J Appl Math Phys (ZAMP) 54:184–189

    Article  MATH  Google Scholar 

  19. Wang CY (2006) Stagnation slip flow and heat transfer on a moving plate. Chem Eng Sci 61:7668–7672

    Article  ADS  Google Scholar 

  20. Wang CY (2007) Stagnation flow on a cylinder with partial slip—an exact solution of the Navier-Stokes equations. IMA J Appl Math 72:271–277

    Article  MATH  MathSciNet  Google Scholar 

  21. Sharipov F, Seleznev V (1998) Data on internal rarefied gas flows. J Phys Chem Ref Data 27:657–706

    Article  ADS  Google Scholar 

  22. Wang CY (2003) Flow over a surface with parallel grooves. Phys Fluids 15(5):1114–1121

    Article  ADS  Google Scholar 

  23. Saffman PG (1971) On the boundary condition at the surface of a porous medium. Stud Appl Math 50:93–101

    MATH  Google Scholar 

  24. Jena SK, Mathur MN (1981) Similarity solutions for laminar free convection flow of a thermomicropolar fluid past a nonisothermal flat plate. Int J Eng Sci 19:1431–1439

    Article  MATH  Google Scholar 

  25. Ahmadi G (1976) Self-similar solution of incompressible micropolar boundary layer flow over a semi-infinite plate. Int J Eng Sci 14:639–646

    Article  MATH  Google Scholar 

  26. Peddieson J (1972) An application of the micropolar fluid model to the calculation of turbulent shear flow. Int J Eng Sci 10:23–32

    Article  Google Scholar 

  27. Cebeci T, Bradshaw P (1984) Physical and computational aspect of convective heat transfer. Springer, New York

    Google Scholar 

  28. Cebeci T (2002) Convective heat transfer. Horizon Publishing, California

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Pop.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lok, Y.Y., Pop, I. & Ingham, D.B. Oblique stagnation slip flow of a micropolar fluid. Meccanica 45, 187–198 (2010). https://doi.org/10.1007/s11012-009-9236-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-009-9236-9

Keywords

Navigation