Skip to main content
Log in

Effects of prenatal exposure to inflammation coupled with prepubertal stress on prefrontal white matter structure and related molecules in adult mouse offspring

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Maternal immune activation (MIA) by inflammatory agents such as lipopolysaccharide (LPS) and prepubertal stress (PS) may individually and collectively affect the central nervous system (CNS) during adulthood. Here, we intended to assess the effects of MIA, alone or combined with PS, on prefrontal white matter structure and its related molecules in adult mice offspring. Pregnant mice received either an i.p. dose of LPS (50 μg/kg) on gestational day 17 (GD17) or normal saline. Their pups were exposed to stress from postnatal days (PD) 30 to PD38 or no stress during prepubertal development. We randomly chose 56-day-old male offspring (n = 2 offspring per mother) from each group and isolated their prefrontal areas according to relevant protocols. The tissue samples were prepared for structural, histological, and molecular examinations. The LPS + stress group had evidence of increased damage in the white matter structures compared to the control, stress, and LPS groups (p < 0.05). The LPS + stress group also had significant downregulation of the genes involved in white matter formation (Sox10, Olig1, myelin regulatory factor, and Wnt compared with the control, stress, and LPS groups (p < 0.05). In conclusion, although each manipulation individually resulted in small changes in myelination, their combined effects were more pronounced. These changes were parallel to abnormal expression levels of the molecular factors that contribute to myelination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated during this study are available from the corresponding author on request.

References

  • Afsordeh K, Sadeghi Y, Amini A, Namvarpour Z, Abdollahifar M-A, Abbaszadeh H-A, Aliaghaei A (2019) Alterations of neuroimmune cell density and pro-inflammatory cytokines in response to thimerosal in prefrontal lobe of male rats. Drug Chem Toxicol 42:176–186

    Article  CAS  PubMed  Google Scholar 

  • Amini A, Namvarpour Z, Namvarpour M, Raoofi A (2020) Risperidone accelerates bone loss in rats with autistic-like deficits induced by maternal lipopolysaccharides exposure. Life Sci 258:118197

    Article  CAS  PubMed  Google Scholar 

  • Antontseva E, Bondar N, Reshetnikov V, Merkulova T (2020) The effects of chronic stress on brain myelination in humans and in various rodent models. Neuroscience 441:226–238

  • Aprato J, Sock E, Weider M, Elsesser O, Fröb F, Wegner M (2020) Myrf guides target gene selection of transcription factor Sox10 during oligodendroglial development. Nucleic Acids Res 48:1254–1270

    Article  CAS  PubMed  Google Scholar 

  • Bale TL, Epperson CN (2015) Sex differences and stress across the lifespan. Nat Neurosci 18:1413–1420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bénardais K, Gudi V, Gai L, Neßler J, Singh V, Prajeeth CK, Skripuletz T, Stangel M (2014) Long-term impact of neonatal inflammation on demyelination and remyelination in the central nervous system. Glia 62:1659–1670

    Article  PubMed  Google Scholar 

  • Bergdolt L, Dunaevsky A (2019) Brain changes in a maternal immune activation model of neurodevelopmental brain disorders. Prog Neurobiol 175:1–19

    Article  CAS  PubMed  Google Scholar 

  • Bisht K, Sharma K, Tremblay M-È (2018) Chronic stress as a risk factor for Alzheimer’s disease: Roles of microglia-mediated synaptic remodeling, inflammation, and oxidative stress. Neurobiol Stress 9:9–21

    Article  PubMed  PubMed Central  Google Scholar 

  • Boulanger JJ, Messier C (2014) From precursors to myelinating oligodendrocytes: contribution of intrinsic and extrinsic factors to white matter plasticity in the adult brain. Neuroscience 269:343–366

    Article  CAS  PubMed  Google Scholar 

  • Bradl M, Lassmann H (2010) Oligodendrocytes: biology and pathology. Acta Neuropathol 119:37–53

    Article  PubMed  Google Scholar 

  • Brenhouse HC, Danese A, Grassi-Oliveira R (2018) Neuroimmune impacts of early-life stress on development and psychopathology. Neuroendocr Regul Behav 43:423–447

    Article  CAS  Google Scholar 

  • Chew L-J, Fusar-Poli P, Schmitz T (2013) Oligodendroglial alterations and the role of microglia in white matter injury: relevance to schizophrenia. Dev Neurosci 35:102–129

    Article  CAS  PubMed  Google Scholar 

  • Crews F, He J, Hodge C (2007) Adolescent cortical development: a critical period of vulnerability for addiction. Pharmacol Biochem Behav 86:189–199

    Article  CAS  PubMed  Google Scholar 

  • Deslauriers AM, Afkhami-Goli A, Paul AM, Bhat RK, Acharjee S, Ellestad KK, Noorbakhsh F, Michalak M, Power C (2011) Neuroinflammation and endoplasmic reticulum stress are coregulated by crocin to prevent demyelination and neurodegeneration. J Immunol 187:4788–4799

    Article  CAS  PubMed  Google Scholar 

  • Donegan J, Boley A, Yamaguchi J, Toney G, Lodge D (2019) Modulation of extrasynaptic GABAA alpha 5 receptors in the ventral hippocampus normalizes physiological and behavioral deficits in a circuit specific manner. Nat Commun 10:1–12

    Article  CAS  Google Scholar 

  • Estes ML, Mcallister AK (2016) Maternal immune activation: Implications for neuropsychiatric disorders. Science 353:772–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fatemi S, Emamian E, Kist D, Sidwell R, Nakajima K, Akhter P, Shier A, Sheikh S, Bailey K (1999) Defective corticogenesis and reduction in Reelin immunoreactivity in cortex and hippocampus of prenatally infected neonatal mice. Mol Psychiatry 4:145–154

    Article  CAS  PubMed  Google Scholar 

  • Finzsch M, Stolt CC, Lommes P, Wegner M (2008) Sox9 and Sox10 influence survival and migration of oligodendrocyte precursors in the spinal cord by regulating PDGF receptor α expression. Development 135:637–646

    Article  CAS  PubMed  Google Scholar 

  • Galvez-Contreras AY, Zarate-Lopez D, Torres-Chavez AL, Gonzalez-Perez O (2020) Role of oligodendrocytes and myelin in the pathophysiology of autism spectrum disorder. Brain Sci 10:951

    Article  CAS  PubMed Central  Google Scholar 

  • Giotakos O (2019) Is psychosis, at least in part, an immune-related dysmyelination disease? Dialogues Clin Neurosci Mental Health 2:116–129

    Google Scholar 

  • Graciarena M, Seiffe A, Nait-Oumesmar B, Depino AM (2019) Hypomyelination and oligodendroglial alterations in a mouse model of autism spectrum disorder. Front Cell Neurosci 12:517

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gyllenhammer LE, Rasmussen JM, Bertele N, Halbing A, Entringer S, Wadhwa PD, Buss C (2021) Maternal inflammation during pregnancy and offspring brain development: the role of mitochondria. Biol Psychiatry: Cogn Neurosci Neuroimaging. In press, Corrected proof

  • Hao L, Hao X, Li S, Li X (2010) Prenatal exposure to lipopolysaccharide results in cognitive deficits in age-increasing offspring rats. Neuroscience 166:763–770

    Article  CAS  PubMed  Google Scholar 

  • Hava G, Vered L, Yael M, Mordechai H, Mahoud H (2006) Alterations in behavior in adult offspring mice following maternal inflammation during pregnancy. Dev Psychobiol: J Int Soc Dev Psychobiol 48:162–168

    Article  Google Scholar 

  • Heidari MH, Amini A, Bahrami Z, Shahriari A, Movafag A, Heidari R (2013) Effect of chronic morphine consumption on synaptic plasticity of rat’s hippocampus: a transmission electron microscopy study. Neurol Res Int 2013

  • Hoban AE, Stilling RM, Ryan FJ, Shanahan F, Dinan TG, Claesson MJ, Clarke G, Cryan JF (2016) Regulation of prefrontal cortex myelination by the microbiota. Transl Psychiatry 6:e774–e774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hornig J, Fröb F, Vogl MR, Hermans-Borgmeyer I, Tamm ER, Wegner M (2013) The transcription factors Sox10 and Myrf define an essential regulatory network module in differentiating oligodendrocytes. PLoS Genet 9:e1003907

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hosoi T, Ozawa K (2012) Molecular approaches to the treatment, prophylaxis, and diagnosis of Alzheimer’s disease: endoplasmic reticulum stress and immunological stress in pathogenesis of Alzheimer’s disease. J Pharmacol Sci 118:319–324

    Article  CAS  PubMed  Google Scholar 

  • Huang P, Chen X, Hu X, Zhou Q, Lin L, Jiang S, Fu H, Xiong Y, Zeng H, Fang M (2020) Experimentally Induced sepsis causes extensive hypomyelination in the prefrontal cortex and hippocampus in neonatal rats. NeuroMol Med 22:420–436

    Article  CAS  Google Scholar 

  • Inguaggiato E, Sgandurra G, Cioni G (2017) Brain plasticity and early development: implications for early intervention in neurodevelopmental disorders. Neuropsychiatr Enfance Adolesc 65:299–306

    Article  Google Scholar 

  • Jessen KR, Mirsky R (2008) Negative regulation of myelination: relevance for development, injury, and demyelinating disease. Glia 56:1552–1565

    Article  PubMed  Google Scholar 

  • Knuesel I, Chicha L, Britschgi M, Schobel SA, Bodmer M, Hellings JA, Toovey S, Prinssen EP (2014) Maternal immune activation and abnormal brain development across CNS disorders. Nat Rev Neurol 10:643–660

    Article  CAS  PubMed  Google Scholar 

  • Koss KJ, Gunnar MR (2018) Annual Research Review: Early adversity, the hypothalamic–pituitary–adrenocortical axis, and child psychopathology. J Child Psychol Psychiatry 59:327–346

    Article  PubMed  Google Scholar 

  • Li H, Lu Y, Smith HK, Richardson WD (2007) Olig1 and Sox10 interact synergistically to drive myelin basic protein transcription in oligodendrocytes. J Neurosci 27:14375–14382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Y, Belin S, He Z (2014) Signaling regulations of neuronal regenerative ability. Curr Opin Neurobiol 27:135–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marques AH, O’connor TG, Roth C, Susser E, Bjørke-Monsen A-L (2013) The influence of maternal prenatal and early childhood nutrition and maternal prenatal stress on offspring immune system development and neurodevelopmental disorders. Front Neurosci 7:120

    Article  PubMed  PubMed Central  Google Scholar 

  • Meyer U (2014) Prenatal poly (i: C) exposure and other developmental immune activation models in rodent systems. Biol Psychiat 75:307–315

    Article  CAS  PubMed  Google Scholar 

  • Miki T, Satriotomo I, Li H-P, Matsumoto Y, Gu H, Yokoyama T, Lee K-Y, Bedi KS, Takeuchi Y (2005) Application of the physical disector to the central nervous system: estimation of the total number of neurons in subdivisions of the rat hippocampus. Anat Sci Int 80:153–162

    Article  PubMed  Google Scholar 

  • Miron VE, Kuhlmann T, Antel JP (2011) Cells of the oligodendroglial lineage, myelination, and remyelination. Biochim Biophys Acta (BBA)-Mol Basis Dis 1812:184–193

    Article  CAS  Google Scholar 

  • Mitew S, Hay CM, Peckham H, Xiao J, Koenning M, Emery B (2014) Mechanisms regulating the development of oligodendrocytes and central nervous system myelin. Neuroscience 276:29–47

    Article  CAS  PubMed  Google Scholar 

  • Naviaux RK, Zolkipli Z, Wang L, Nakayama T, Naviaux JC, Le TP, Schuchbauer MA, Rogac M, Tang Q, Dugan LL (2013) Antipurinergic therapy corrects the autism-like features in the poly (IC) mouse model. PloS one 8:e57380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noshadian M, Namvarpour Z, Amini A, Raoofi A, Atabati H, Sadeghi Y, Aliaghaei A, Abdollahifar M-A (2020) Alpha lipoic acid ameliorates THIM-induced prefrontal cell loss and abnormal enzymatically contents in the developing rat. J Chem Neuroanat 103:101727

    Article  CAS  PubMed  Google Scholar 

  • O’loughlin E, Pakan JM, Yilmazer-Hanke D, Mcdermott KW (2017) Acute in utero exposure to lipopolysaccharide induces inflammation in the pre-and postnatal brain and alters the glial cytoarchitecture in the developing amygdala. J Neuroinflammation 14:1–12

    Article  CAS  Google Scholar 

  • Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:e36–e36

    Article  PubMed  PubMed Central  Google Scholar 

  • Piaton G, Gould RM, lubetzki C (2010) Axon-oligodendrocyte interactions during developmental myelination, demyelination and repair. J Neurochem 114:1243–1260

    CAS  PubMed  Google Scholar 

  • Pullen LC, Park SH, Miller SD, Dal Canto MC, Kim BS (1995) Treatment with bacterial LPS renders genetically resistant C57BL/6 mice susceptible to Theiler’s virus-induced demyelinating disease. J Immunol 155:4497–4503

    CAS  PubMed  Google Scholar 

  • Raivich G, Makwana M (2007) The making of successful axonal regeneration: genes, molecules and signal transduction pathways. Brain Res Rev 53:287–311

    Article  CAS  PubMed  Google Scholar 

  • Ranaei E, Torshizi S, Amini A, Heidari MH, Namvarpour Z, Fathabady FF, Salari A-A (2020) Peripubertal stress following maternal immune activation sex-dependently alters depression-like behaviors in offspring. Behav Brain Res 393:112800

    Article  CAS  PubMed  Google Scholar 

  • Rao SN, Pearse DD (2016) Regulating axonal responses to injury: the intersection between signaling pathways involved in axon myelination and the inhibition of axon regeneration. Front Mol Neurosci 9:33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rapoport J, Giedd J, Gogtay N (2012) Neurodevelopmental model of schizophrenia: update 2012. Mol Psychiatry 17:1228–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rice D, Barone S Jr (2000) Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect 108:511–533

    PubMed  PubMed Central  Google Scholar 

  • Rousset CI, Kassem J, Aubert A, Planchenault D, Gressens P, Chalon S, Belzung C, Saliba E (2013) Maternal exposure to lipopolysaccharide leads to transient motor dysfunction in neonatal rats. Dev Neurosci 35:172–181

    Article  CAS  PubMed  Google Scholar 

  • Rymut HE, Bolt CR, Caputo MP, Houser AK, Antonson AM, Zimmerman JD, Villamil MB, Southey BR, Rund LA, Johnson RW (2020) Long-lasting impact of maternal immune activation and interaction with a second immune challenge on pig behavior. Front Vet Sci 7:561151

    Article  PubMed  PubMed Central  Google Scholar 

  • Santos G, Barateiro A, Gomes CM, Brites D, Fernandes A (2018) Impaired oligodendrogenesis and myelination by elevated S100B levels during neurodevelopment. Neuropharmacology 129:69–83

    Article  CAS  PubMed  Google Scholar 

  • Skripuletz T, Miller E, Grote L, Gudi V, Pul R, Voss E, Škuljec J, Moharregh-Khiabani D, Trebst C, Stangel M (2011) Lipopolysaccharide delays demyelination and promotes oligodendrocyte precursor proliferation in the central nervous system. Brain Behav Immun 25:1592–1606

    Article  CAS  PubMed  Google Scholar 

  • Soomro SH, Jie J, Fu H (2018) Oligodendrocytes development and Wnt signaling pathway. Int J Hum Anat 1:17

    Article  Google Scholar 

  • Tang Y, Nyengaard J, Pakkenberg B, Gundersen H (1997) Age-induced white matter changes in the human brain: a stereological investigation. Neurobiol Aging 18:609–615

    Article  CAS  PubMed  Google Scholar 

  • Teimouri M, Heidari MH, Amini A, Sadeghi Y, Abdollahifar M-A, Aliaghaei A, Khavanin A, Nadri F, Danyali S, Sanchooli T (2020) Neuroanatomical changes of the medial prefrontal cortex of male pups of Wistar rat after prenatal and postnatal noise stress. Acta Histochem 122:151589

    Article  CAS  PubMed  Google Scholar 

  • Tonelli LH, Holmes A, Postolache TT (2008) Intranasal immune challenge induces sex-dependent depressive-like behavior and cytokine expression in the brain. Neuropsychopharmacology 33:1038–1048

    Article  CAS  PubMed  Google Scholar 

  • Tottenham N (2013) The importance of early experiences for neuro-affective development. The neurobiology of childhood, pp 109–129

  • Vanryzin JW, Pickett LA, Mccarthy MM (2018) Microglia: Driving critical periods and sexual differentiation of the brain. Dev Neurobiol 78:580–592

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang L-W, Chang Y-C, Lin C-Y, Hong J-S, Huang C-C (2010) Low-dose lipopolysaccharide selectively sensitizes hypoxic ischemia-induced white matter injury in the immature brain. Pediatr Res 68:41–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Rousset CI, Hagberg H, Mallard C (2006) Lipopolysaccharide-induced inflammation and perinatal brain injury. Seminars in Fetal and Neonatal Medicine. Elsevier, 343–353

  • Wischhof L, Irrsack E, Osorio C, Koch M (2015) Prenatal LPS-exposure–a neurodevelopmental rat model of schizophrenia–differentially affects cognitive functions, myelination and parvalbumin expression in male and female offspring. Prog Neuropsychopharmacol Biol Psychiatry 57:17–30

    Article  CAS  PubMed  Google Scholar 

  • Yamashita YM, Yuan H, Cheng J, Hunt AJ (2010) Polarity in stem cell division: asymmetric stem cell division in tissue homeostasis. Cold Spring Harb Perspect Biol 2:a001313

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang S, Li C, Qiu X, Zhang L, Lu W, Chen L, Zhao Y, Shi X, Huang C, Cheng G (2013) Effects of an enriched environment on myelin sheaths in the white matter of rats during normal aging: A stereological study. Neuroscience 234:13–21

    Article  CAS  PubMed  Google Scholar 

  • Ye Y, Xiong J, Hu J, Kong M, Cheng L, Chen H, Li T, Jiang L (2013) Altered hippocampal myelinated fiber integrity in a lithium-pilocarpine model of temporal lobe epilepsy: a histopathological and stereological investigation. Brain Res 1522:76–87

    Article  CAS  PubMed  Google Scholar 

  • Zager A, Peron JP, Mennecier G, Rodrigues SC, Aloia TP, Palermo-Neto J (2015) Maternal immune activation in late gestation increases neuroinflammation and aggravates experimental autoimmune encephalomyelitis in the offspring. Brain Behav Immun 43:159–171

    Article  CAS  PubMed  Google Scholar 

  • Zuchero JB, Barres BA (2013) Intrinsic and extrinsic control of oligodendrocyte development. Curr Opin Neurobiol 23:914–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuckerman L, Rehavi M, Nachman R, Weiner I (2003) Immune activation during pregnancy in rats leads to a postpubertal emergence of disrupted latent inhibition, dopaminergic hyperfunction, and altered limbic morphology in the offspring: a novel neurodevelopmental model of schizophrenia. Neuropsychopharmacology 28:1778–1789

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The present article is financially supported by the Research Department of The School of Medicine, Shahid Beheshti University of Medical Sciences (Grant Number: 14666), and IR.SBMU.MSP.REC.1397. 670. The authors are thankful for this valuable support.

Funding

This study was funded by the Research Department of The School of Medicine, Shahid Beheshti University of Medical Sciences (Grant Number: 14666) and IR.SBMU.MSP.REC.1397. 670.

Author information

Authors and Affiliations

Authors

Contributions

Z. Namvarpour & A. Amini, co-designed the study, supervised all the experiments, and analyzed the results. E. Ranaei & Z. Roudafshani participated in literature and performed the methods. A. Amini: editing manuscript and funding. J. Fahanik-Babaei wrote the original draft of the manuscript and provided laboratory materials. All authors read, modified, and approved the final version of the manuscript.

Corresponding author

Correspondence to Abdollah Amini.

Ethics declarations

Declarations

The Research and Ethics Committee of Shahid Beheshti University of Medical Sciences (IR.SBMU.MSP.REC. 1397.670) approved this research study. All experimental procedures and animal handling were conducted following the National Institute of Health “Guide for the Care and Use of Laboratory Animals”.

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Namvarpour, Z., Ranaei, E., Amini, A. et al. Effects of prenatal exposure to inflammation coupled with prepubertal stress on prefrontal white matter structure and related molecules in adult mouse offspring. Metab Brain Dis 37, 1655–1668 (2022). https://doi.org/10.1007/s11011-022-00968-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-022-00968-9

Keywords

Navigation