Skip to main content

Advertisement

Log in

Neurovascular dysfunctions in hypertensive disorders of pregnancy

  • Review Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Hypertensive disorders in pregnancy pose a huge challenge to the socioeconomic stability of a community; being a major cause of maternal and neonatal morbidity and mortality during delivery. Although there have been recent improvements in management strategies, still, the diversified nature of the underlying pathogenesis undermines their effectiveness. Generally, these disorders are categorized into two; hypertensive disorders of pregnancy with proteinuria (pre-eclampsia and eclampsia) and hypertensive disorders of pregnancy without proteinuria (gestational and chronic hypertension). Each of these conditions may present with unique characteristics that have interwoven symptoms. However, the tendency of occurrence heightens in the presence of any pre-existing life-threatening condition(s), environmental, and/or other genetic factors. Investigations into the cerebrovascular system demonstrate changes in the histoarchitectural organization of neurons, the proliferation of glial cells with an associated increase in inflammatory cytokines. These are oxidative stress indicators which impose a deteriorating impact on the structures that form the neurovascular unit and the blood-brain barrier (BBB). Such a pathologic state distorts the homeostatic supply of blood into the brain, and enhances the permeability of toxins/pathogens through a process called hyperperfusion at the BBB. Furthermore, a notable aspect of the pathogenesis of hypertensive disorders of pregnancy is endothelial dysfunction aggravated when signaling of the vasoprotective molecule, nitric oxide, amongst other neurotransmitter regulatory activities are impaired. This review aims to discuss the alterations in cerebrovascular regulation that determine the incidence of hypertension in pregnancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

References

  • Abalos E et al (2014) Pre-eclampsia, eclampsia and adverse maternal and perinatal outcomes: a secondary analysis of the World Health Organization Multicountry Survey on Maternal and Newborn Health . BJOG Int J Obstet Gynaecol 121:14–24

    Google Scholar 

  • ACOG (2019) ACOG practice bulletin no. 202: gestational hypertension and preeclampsia. Obstet Gynecol 133:e1–e25. https://doi.org/10.1097/aog.0000000000003018

    Article  Google Scholar 

  • Armulik A et al (2010) Pericytes regulate the blood–brain barrier. Nature 468:557–561

    CAS  PubMed  Google Scholar 

  • Backes CH, Markham K, Moorehead P, Cordero L, Nankervis CA, Giannone PJ (2011) Maternal preeclampsia and neonatal outcomes. J Pregnancy 2011:214365

    PubMed  PubMed Central  Google Scholar 

  • Baggio MRF, Martins WP, Calderon ACS, Berezowski AT, Marcolin AC, Duarte G, Cavalli RC (2011) Changes in fetal and maternal Doppler parameters observed during acute severe hypertension treatment with hydralazine or labetalol: a randomized controlled trial. Ultrasound Med Biol 37:53–58

    PubMed  Google Scholar 

  • Bateman BT et al (2015) Chronic hypertension in pregnancy and the risk of congenital malformations: a cohort study. Am J Obstet Gynecol 212:337.e331-337.e314

  • Belfort MA, Tooke-Miller C, Allen JC Jr, Varner MA, Grunewald C, Nisell H, Herd JA (2001) Pregnant women with chronic hypertension and superimposed pre-eclampsia have high cerebral perfusion pressure. Br J Obstet Gynaecol 108:1141–1147

    CAS  Google Scholar 

  • Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Das SR, Delling FN, Djousse L, Elkind MSV, Ferguson JF, Fornage M, Jordan LC, Khan SS, Kissela BM, Knutson KL, Kwan TW, Lackland DT, Lewis TT, Lichtman JH, Longenecker CT, Loop MS, Lutsey PL, Martin SS, Matsushita K, Moran AE, Mussolino ME, O'Flaherty M, Pandey A, Perak AM, Rosamond WD, Roth GA, Sampson UKA, Satou GM, Schroeder EB, Shah SH, Spartano NL, Stokes A, Tirschwell DL, Tsao CW, Turakhia MP, VanWagner LB, Wilkins JT, Wong SS, Virani SS, American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee (2019) Heart disease and stroke Statistics-2019: update a report from the American Heart Association. Circulation 139:e56–e528

  • Berhe AK, Kassa GM, Fekadu GA, Muche AA (2018) Prevalence of hypertensive disorders of pregnancy in Ethiopia: a systemic review and meta-analysis. BMC Pregnancy Childbirth 18:1–11

    Google Scholar 

  • Bernardi F, Constantino L, Machado R, Petronilho F, Dal-Pizzol F (2008) Plasma nitric oxide, endothelin‐1, arginase and superoxide dismutase in pre‐eclamptic women. J Obstet Gynaecol Res 34:957–963

    CAS  PubMed  Google Scholar 

  • Bowen RS, Zhang Y, Gu Y, Lewis DF, Wang Y (2005) Increased phospholipase A2 and thromboxane but not prostacyclin production by placental trophoblast cells from normal and preeclamptic pregnancies cultured under hypoxia condition. Placenta 26:402–409

    CAS  PubMed  Google Scholar 

  • Brown MA et al (2018) Hypertensive disorders of pregnancy: ISSHP classification, diagnosis, and management recommendations for international practice. Hypertension 72:24–43

    CAS  PubMed  Google Scholar 

  • Bullo M, Tschumi S, Bucher BS, Bianchetti MG, Simonetti GD (2012) Pregnancy outcome following exposure to angiotensin-converting enzyme inhibitors or angiotensin receptor antagonists: a. systematic review Hypertension 60:444–450

    CAS  PubMed  Google Scholar 

  • Bureau UA (2012) Three successful Sub-Saharan Africa family planning programs: Ethiopia, Malawi, Rwanda. USAID, Washington, DC

    Google Scholar 

  • Chen Q et al (2012) Calcium channel blockers prevent endothelial cell activation in response to necrotic trophoblast debris: possible relevance to pre-eclampsia. Cardiovasc Res 96:484–493

    CAS  PubMed  Google Scholar 

  • Cingolani HE et al (2006) The positive inotropic effect of angiotensin II: role of endothelin-1 and reactive oxygen species. Hypertension 47:727–734

    CAS  PubMed  Google Scholar 

  • Cipolla MJ (2013) The adaptation of the cerebral circulation to pregnancy: mechanisms and consequences. J Cereb Blood Flow Metab 33:465–478

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cipolla MJ, Sweet JG, Chan S-L (2011) Cerebral vascular adaptation to pregnancy and its role in the neurological complications of eclampsia. J Appl Physiol 110:329–339

    PubMed  Google Scholar 

  • Cipolla MJ, Bishop N, Chan S-L (2012) Effect of pregnancy on autoregulation of cerebral blood flow in anterior versus posterior cerebrum. Hypertension 60:705–711

    CAS  PubMed  Google Scholar 

  • Collange O, Launoy A, Kopf-Pottecher A, Dietemann J-L, Pottecher T (2010) Eclampsie. Annales francaises d’anesthesie et de reanimation, vol 4. Elsevier, Amsterdam, pp e75–e82

    Google Scholar 

  • Cooper WO et al (2006) Major congenital malformations after first-trimester exposure to ACE inhibitors. N Engl J Med 354:2443–2451

    CAS  PubMed  Google Scholar 

  • Csiszar A et al (2017) Hypertension impairs neurovascular coupling and promotes microvascular injury: role in exacerbation of Alzheimer’s disease. Geroscience 39:359–372

    PubMed  PubMed Central  Google Scholar 

  • Cunningham F, Leveno K, Bloom S, Hauth J, Rouse D, Spong C (2010) Pregnancy hypertension. In: Cunningham F, Leveno K, Bloom S, Dashe J,Hoffman B, Casey B, Spong C (eds) Williams obstetrics. 23 edn. McGraw-Hill, New York, pp 706–756

  • Dai W, Lopez OL, Carmichael OT, Becker JT, Kuller LH, Gach HM (2008) Abnormal regional cerebral blood flow in cognitively normal elderly subjects with hypertension. Stroke 39:349–354

    PubMed  PubMed Central  Google Scholar 

  • Dayan N, Kaur A, Elharram M, Rossi AM, Pilote L (2018) Impact of preeclampsia on long-term cognitive function. Hypertension 72:1374–1380

    CAS  PubMed  Google Scholar 

  • De Silva TM, Faraci F (2013) Effects of angiotensin II on the cerebral circulation: role of oxidative stress. Front Physiol 3:484

    PubMed  PubMed Central  Google Scholar 

  • Diav-Citrin O et al (2011) Pregnancy outcome after in utero exposure to angiotensin converting enzyme inhibitors or angiotensin receptor blockers. Reprod Toxicol 31:540–545

    CAS  PubMed  Google Scholar 

  • Eiríksdóttir VH et al (2015) Pregnancy-induced hypertensive disorders before and after a national economic collapse: a population based cohort study. PLoS One 10:e0138534

    PubMed  PubMed Central  Google Scholar 

  • Euser AG, Cipolla MJ (2007) Cerebral blood flow autoregulation and edema formation during pregnancy in anesthetized rats. Hypertension 49:334–340

    CAS  PubMed  Google Scholar 

  • Fan Y, Yang X, Tao Y, Lan L, Zheng L, Sun J (2015) Tight junction disruption of blood–brain barrier in white matter lesions in chronic hypertensive rats. Neuroreport 26:1039–1043

    CAS  PubMed  Google Scholar 

  • Faraco G et al (2016b) Perivascular macrophages mediate the neurovascular and cognitive dysfunction associated with hypertension. J Clin Investig 126:4674–4689

    PubMed  PubMed Central  Google Scholar 

  • Faraco G, Iadecola C (2013) Hypertension: a harbinger of stroke and dementia. Hypertension 62:810–817

    CAS  PubMed  Google Scholar 

  • Faraco G, Park L, Zhou P, Luo W, Paul SM, Anrather J, Iadecola C (2016) Hypertension enhances A β-induced neurovascular dysfunction, promotes β-secretase activity, and leads to amyloidogenic processing of APP. J Cereb Blood Flow Metab 36:241–252

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garovic VD et al (2020) Incidence and long-term outcomes of hypertensive disorders of pregnancy. J Am Coll Cardiol 75:2323–2334

    PubMed  PubMed Central  Google Scholar 

  • Gilbert JS, Gilbert SA, Arany M, Granger JP (2009) Hypertension produced by placental ischemia in pregnant rats is associated with increased soluble endoglin expression. Hypertension 53:399–403

    CAS  PubMed  Google Scholar 

  • Girouard H, Iadecola C (2006) Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. J Appl Physiol 100:328–335

    CAS  PubMed  Google Scholar 

  • Groenhof TKJ et al (2019) Trajectory of cardiovascular risk factors after hypertensive disorders of pregnancy: an argument for follow-up. Hypertension 73:171–178

    CAS  PubMed  Google Scholar 

  • Gu Y, Lewis DF, Wang Y (2008) Placental productions and expressions of soluble endoglin, soluble fms-like tyrosine kinase receptor-1, and placental growth factor in normal and preeclamptic pregnancies. J Clin Endocrinol Metab 93:260–266

    CAS  PubMed  Google Scholar 

  • Gudeta TA, Regassa TM (2019) Pregnancy induced hypertension and associated factors among women attending delivery service at Mizan-Tepi University Teaching Hospital, Tepi General Hospital and Gebretsadik Shawo Hospital, Southwest. Ethiopia. Ethiop J Health Sci 29(1):831–840

    PubMed  Google Scholar 

  • Habli M, Sibai BM (2008) Hypertension in pregnancy. Therapy in nephrology & hypertension. Elsevier, Amsterdam, pp 479–485

    Google Scholar 

  • Halliday MR, Pomara N, Sagare AP, Mack WJ, Frangione B, Zlokovic BV (2013) Relationship between cyclophilin a levels and matrix metalloproteinase 9 activity in cerebrospinal fluid of cognitively normal apolipoprotein e4 carriers and blood-brain barrier breakdown. JAMA Neurol 70:1198–1200

    PubMed  PubMed Central  Google Scholar 

  • Hammer ES, Cipolla MJ (2015) Cerebrovascular dysfunction in preeclamptic pregnancies. Curr Hypertens Rep 17:64

    PubMed  PubMed Central  Google Scholar 

  • Haram K, Mortensen JH, Myking O, Magann EF, Morrison JC (2019) The role of oxidative stress, adhesion molecules and antioxidants in preeclampsia. Curr Hypertens Rev 15:105–112

    CAS  PubMed  Google Scholar 

  • Hofmeyr GJ, Belfort M (2009) Proteinuria as a predictor of complications of pre-eclampsia. BMC Med 7:1–3

    Google Scholar 

  • Iadecola C (2014) Hypertension and dementia. Hypertension 64:3–5

    CAS  PubMed  Google Scholar 

  • Iadecola C, Gottesman RF (2019) Neurovascular and cognitive dysfunction in hypertension: epidemiology, pathobiology, and treatment. Circ Res 124:1025–1044

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ijomone OK, Shallie P, Naicker T (2018) Changes in the structure and function of the brain years after pre-eclampsia. Ageing Res Rev 47:49–54

    PubMed  Google Scholar 

  • Ijomone OK, Shallie PD, Naicker T (2019) N-nitro-L-arginine methyl model of pre-eclampsia elicits differential IBA1 and EAAT1 expressions in brain. J Chem Neuroanat 100:101660

    CAS  PubMed  Google Scholar 

  • Jaatinen N, Ekholm E (2016) Eclampsia in Finland; 2006 to 2010. Acta Obstet Gynecol Scand 95:787–792

    PubMed  Google Scholar 

  • Johnson AC, Nagle KJ, Tremble SM, Cipolla MJ (2015) The contribution of normal pregnancy to eclampsia. PLoS One 10:e0133953

    PubMed  PubMed Central  Google Scholar 

  • Johnson AC, Hammer ES, Sakkaki S, Tremble SM, Holmes GL, Cipolla MJ (2018) Inhibition of blood-brain barrier efflux transporters promotes seizure in pregnant rats: Role of circulating factors . Brain Behav Immun 67:13–23

    CAS  PubMed  Google Scholar 

  • Jones-Muhammad M, Warrington JP (2019) Cerebral blood flow regulation in pregnancy, hypertension, and hypertensive disorders of pregnancy. Brain Sci 9:224

    CAS  PubMed Central  Google Scholar 

  • Karumanchi SA (2018) Pregnancy and the kidney. Textbook of Nephro-Endocrinology. Elsevier, Amsterdam, pp 319–345

    Google Scholar 

  • Karumanchi SA, Maynard SE, Stillman IE, Epstein FH, Sukhatme VP (2005) Preeclampsia: a renal perspective. Kidney Int 67:2101–2113

    PubMed  Google Scholar 

  • Kassebaum NJ et al (2014) Global, regional, and national levels and causes of maternal mortality during 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 384:980–1004

    PubMed  PubMed Central  Google Scholar 

  • Khan K et al (2010) Safety concerns for the use of calcium channel blockers in pregnancy for the treatment of spontaneous preterm labour and hypertension: a systematic review and meta-regression analysis. J Matern Fetal Neonatal Med 23:1030–1038

    CAS  PubMed  Google Scholar 

  • Kim T, Richard Jennings J, Kim S-G (2014) Regional cerebral blood flow and arterial blood volume and their reactivity to hypercapnia in hypertensive and normotensive rats. J Cereb Blood Flow Metab 34:408–414

    CAS  PubMed  Google Scholar 

  • Kintiraki E, Papakatsika S, Kotronis G, Goulis DG, Kotsis V (2015) Pregnancy-induced hypertension. Hormones 14:211–223

    PubMed  Google Scholar 

  • Kisler K, Nelson AR, Montagne A, Zlokovic BV (2017) Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nat Rev Neurosci 18:419

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kleinrouweler CE et al (2012) Accuracy of circulating placental growth factor, vascular endothelial growth factor, soluble fms-like tyrosine kinase 1 and soluble endoglin in the prediction of pre‐eclampsia: a systematic review and meta‐analysis . BJOG Int J Obstet Gynaecol 119:778–787

    CAS  Google Scholar 

  • LaMarca B et al (2009) Hypertension in response to autoantibodies to the angiotensin II type I receptor (AT1-AA) in pregnant rats: role of endothelin-1. Hypertension 54:905–909

    CAS  PubMed  Google Scholar 

  • Lee RM, Dickhout JG, Sandow SL (2017) Vascular structural and functional changes: their association with causality in hypertension: models, remodeling and relevance. Hypertens Res 40:311–323

    PubMed  Google Scholar 

  • Leeners B, Neumaier-Wagner P, Kuse S, Stiller R, Rath W (2007) Emotional stress and the risk to develop hypertensive diseases in pregnancy. Hypertens Pregnancy 26:211–226

    PubMed  Google Scholar 

  • Li X, Han X, Yang J, Bao J, Di X, Zhang G, Liu H (2017) Magnesium sulfate provides neuroprotection in eclampsia-like seizure model by ameliorating neuroinflammation and brain edema. Mol Neurobiol 54:7938–7948

    CAS  PubMed  Google Scholar 

  • Lozano R et al (2012) Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380:2095–2128

    PubMed  Google Scholar 

  • Magee L et al (2016) Do labetalol and methyldopa have different effects on pregnancy outcome? Analysis of data from the Control of Hypertension In Pregnancy Study (CHIPS) trial . BJOG Int J Obstet Gynaecol 123:1143–1151

    CAS  Google Scholar 

  • Magee LA, Pels A, Helewa M, Rey E, von Dadelszen P (2014) Diagnosis, evaluation, and management of the hypertensive disorders of pregnancy . Pregnancy Hypertens 4:105–145

    PubMed  Google Scholar 

  • Malvasi A, Tinelli A, Di Renzo GC (2017) Management and therapy of late pregnancy complications: third trimester and puerperium. Springer, Berlin

  • Marshall SA, Leo CH, Girling JE, Tare M, Beard S, Hannan NJ, Parry LJ (2017) Relaxin treatment reduces angiotensin II-induced vasoconstriction in pregnancy and protects against endothelial dysfunction. Biol Reprod 96:895–906

    PubMed  Google Scholar 

  • Masson C, Levardon M (1990) Eclampsia. Presse Med (Paris, France: 1983) 19:1188

  • Michinaga S, Koyama Y (2015) Pathogenesis of brain edema and investigation into anti-edema drugs. Int J Mol Sci 16:9949–9975

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miller EC (2019) Preeclampsia and cerebrovascular disease: the maternal brain at risk. Hypertension 74:5–13

    CAS  PubMed  Google Scholar 

  • Miller KB, Miller VM, Barnes JN (2019) Pregnancy history, hypertension, and cognitive impairment in postmenopausal women. Curr Hypertens Rep 21:93

    PubMed  PubMed Central  Google Scholar 

  • Mogi M (2019) Could management of blood pressure prevent dementia in the elderly? Clin Hypertens 25:27

    PubMed  PubMed Central  Google Scholar 

  • Morikawa M, Yamada T, Yamada T, Cho K, Sato S, Minakami H (2014) Seasonal variation in the prevalence of pregnancy-induced hypertension in Japanese women. J Obstet Gynaecol Res 40:926–931

    PubMed  Google Scholar 

  • Mtali YS, Lyimo MA, Luzzatto L, Massawe SN (2019) Hypertensive disorders of pregnancy are associated with an inflammatory state: evidence from hematological findings and cytokine levels. BMC Pregnancy Childbirth 19:237. doi:https://doi.org/10.1186/s12884-019-2383-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mustafa R, Ahmed S, Gupta A, Venuto RC (2012) A comprehensive review of hypertension in pregnancy. J Pregnancy 2012:105918

    PubMed  PubMed Central  Google Scholar 

  • Nadruz W (2015) Myocardial remodeling in hypertension. J Hum Hypertens 29:1–6

    CAS  PubMed  Google Scholar 

  • Niwano K, Arai M, Tomaru K, Uchiyama T, Ohyama Y, Kurabayashi M (2003) Transcriptional stimulation of the eNOS gene by the stable prostacyclin analogue beraprost is mediated through cAMP-responsive element in vascular endothelial cells: close link between PGI2 signal and NO pathways. Circ Res 93:523–530

    CAS  PubMed  Google Scholar 

  • Nobili F et al (1993) Regional cerebral blood flow in chronic hypertension. A correlative study. Stroke 24:1148–1153

    CAS  PubMed  Google Scholar 

  • Osol G, Mandala M (2009) Maternal uterine vascular remodeling during pregnancy. Physiology 24:58–71

    PubMed  Google Scholar 

  • Panaitescu AM, Syngelaki A, Prodan N, Akolekar R, Nicolaides KH (2017) Chronic hypertension and adverse pregnancy outcome: a cohort study . Ultrasound Obstet Gynecol 50:228–235

    CAS  PubMed  Google Scholar 

  • Panaitescu AM, Roberge S, Nicolaides KH (2019) Chronic hypertension: effect of blood pressure control on pregnancy outcome. J Matern Fetal Neonatal Med 32:857–863

    PubMed  Google Scholar 

  • Petersen KM et al (2012) β-Blocker treatment during pregnancy and adverse pregnancy outcomes: a nationwide population-based cohort study. BMJ Open 2(4):e001185

    PubMed  PubMed Central  Google Scholar 

  • Ravizza T, Gagliardi B, Noé F, Boer K, Aronica E, Vezzani A (2008) Innate and adaptive immunity during epileptogenesis and spontaneous seizures: evidence from experimental models and human temporal lobe epilepsy. Neurobiol Dis 29:142–160

    CAS  PubMed  Google Scholar 

  • Rocca WA et al (2018) Loss of ovarian hormones and accelerated somatic and mental aging. Physiology 33:374–383

    PubMed  PubMed Central  Google Scholar 

  • Salomon A, Ishaku S, Kirk KR, Warren CE (2019) Detecting and managing hypertensive disorders in pregnancy: a cross-sectional analysis of the quality of antenatal care in Nigeria. BMC Health Serv Res 19:411

    PubMed  PubMed Central  Google Scholar 

  • Setiadi A, Korim WS, Elsaafien K, Yao ST (2018) The role of the blood–brain barrier in hypertension. Exp Physiol 103:337–342

    CAS  PubMed  Google Scholar 

  • Shabir O, Berwick J, Francis SE (2018) Neurovascular dysfunction in vascular dementia Alzheimer’s atherosclerosis. BMC Neurosci 19:62

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shah S (2020) Hypertensive disorders in pregnancy. In: Obstetric and gynecologic nephrology. Springer, Berlin, pp 11–23

  • Sharma C, Soni A, Gupta A, Verma A, Verma S (2017) Hydralazine vs nifedipine for acute hypertensive emergency in pregnancy: a randomized controlled trial. Am J Obstet Gynecol 217:687.e681-687.e686

    Google Scholar 

  • Sibai BM (2003) Diagnosis and management of gestational hypertension and preeclampsia. Obstet Gynecol 102:181–192

    PubMed  Google Scholar 

  • Sica DA (2015) Centrally acting antihypertensive agents in the treatment of hypertension. Pathophysiology and pharmacotherapy of cardiovascular disease. Springer, Berlin, pp 853–868

    Google Scholar 

  • Sierra C (2014) Essential hypertension, cerebral white matter pathology and ischemic stroke. Curr Med Chem 21:2156–2164

    CAS  PubMed  Google Scholar 

  • Soma-Pillay P, Catherine N-P, Tolppanen H, Mebazaa A, Tolppanen H, Mebazaa A (2016) Physiological changes in pregnancy . Cardiovascular J Afr 27:89

    Google Scholar 

  • Stennett AK, Khalil RA (2006) Neurovascular mechanisms of hypertension in pregnancy. Curr Neurovasc Res 3:131–148

    CAS  PubMed  Google Scholar 

  • Stuart JJ et al (2013) Maternal recall of hypertensive disorders in pregnancy: a systematic review. J Women’s Health 22:37–47

    Google Scholar 

  • Suzuki H et al (2017) Abnormal brain white matter microstructure is associated with both pre-hypertension and hypertension. PLoS One 12:e0187600

    PubMed  PubMed Central  Google Scholar 

  • Takeuchi S, Nagatani K, Otani N, Nawashiro H, Sugawara T, Wada K, Mori K (2015) Hydrogen improves neurological function through attenuation of blood–brain barrier disruption in spontaneously hypertensive stroke-prone rats. BMC Neurosci 16:1–13

    CAS  Google Scholar 

  • Tenório MB, Ferreira RC, Moura FA, Bueno NB, de Oliveira ACM, Goulart MOF (2019) Cross-Talk between Oxidative Stress and Inflammation inPreeclampsia Oxidative medicine and cellular longevity 2019:8238727

  • Torres-Vergara P, Escudero C, Penny J (2018) Drug transport at the brain and endothelial dysfunction in preeclampsia: implications and perspectives. Front Physiol 9:1502

    PubMed  PubMed Central  Google Scholar 

  • Ukah UV et al (2018) Prediction of adverse maternal outcomes from pre-eclampsia and other hypertensive disorders of pregnancy: A systematic review. Pregnancy Hypertension 11:115–123

    PubMed  Google Scholar 

  • Umans JG (2007) Hypertension in pregnancy. Comprehensive hypertension. Elsevier, Amsterdam, pp 669–680

    Google Scholar 

  • van Assema DM et al (2012) P-glycoprotein function at the blood–brain barrier: effects of age and gender . Mol Imaging Biol 14:771–776

    PubMed  PubMed Central  Google Scholar 

  • van Veen TR, Panerai RB, Haeri S, Griffioen AC, Zeeman GG, Belfort MA (2013) Cerebral autoregulation in normal pregnancy and preeclampsia. Obstet Gynecol 122:1064–1069

    PubMed  Google Scholar 

  • Verburg PE, Tucker G, Scheil W, Erwich JJH, Roberts CT, Dekker GA (2015) [177-POS]: Seasonality of pregnancy induced hypertensive disorders in South Australia–A retrospective population study 2007–2011 . Pregnancy Hypertens 5:91

    Google Scholar 

  • Vezzani A, Balosso S, Ravizza T (2008) The role of cytokines in the pathophysiology of epilepsy . Brain Behav Immun 22:797–803

    CAS  PubMed  Google Scholar 

  • von Dadelszen P, Magee LA (2016) Preventing deaths due to the hypertensive disorders of pregnancy. Best Pract Res Clin Obstet Gynaecol 36:83–102

    Google Scholar 

  • Wang N, Mi X, Gao B, Gu J, Wang W, Zhang Y, Wang X (2015) Minocycline inhibits brain inflammation and attenuates spontaneous recurrent seizures following pilocarpine-induced status epilepticus. Neuroscience 287:144–156

    CAS  PubMed  Google Scholar 

  • Wenger NK et al (2018) Hypertension across a woman’s life cycle. J Am Coll Cardiol 71:1797–1813

    PubMed  PubMed Central  Google Scholar 

  • Yamamoto T, Suzuki Y, Kojima K, Suzumori K (2005) Reduced flow-mediated vasodilation is not due to a decrease in production of nitric oxide in preeclampsia. Am J Obstet Gynecol 192:558–563

    CAS  PubMed  Google Scholar 

  • Younes ST, Ryan MJ (2019) Pathophysiology of cerebral vascular dysfunction in pregnancy-induced hypertension. Curr Hypertens Rep 21:52

    PubMed  PubMed Central  Google Scholar 

  • Zeng Z, Liu F, Li S (2017) Metabolic adaptations in pregnancy: a review . Ann Nutr Metab 70:59–65

    CAS  PubMed  Google Scholar 

  • Zlokovic BV (2008) The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 57:178–201

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

O.M.I. acknowledges the support of the International Brain Research Organization (IBRO) to The Neuro- Lab, School of Health and Health Technology, Federal University of Technology Akure, Nigeria.

Author information

Authors and Affiliations

Authors

Contributions

Conception – O.K.I. and O.M.I.; Manuscript writing – O.K.I., I.R.O., COAO; Critical review – G.T.A., O.M.I. All authors approved final manuscript draft.

Corresponding authors

Correspondence to Olayemi K. Ijomone or Omamuyovwi M. Ijomone.

Ethics declarations

Ethical approval

Not applicable. This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ijomone, O.K., Osahon, I.R., Okoh, C.O.A. et al. Neurovascular dysfunctions in hypertensive disorders of pregnancy. Metab Brain Dis 36, 1109–1117 (2021). https://doi.org/10.1007/s11011-021-00710-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-021-00710-x

Keywords

Navigation